Euler angles vs. Quaternions - problems caused by the tension between internal storage and presentation to the user?

Will Baker picture Will Baker · May 7, 2009 · Viewed 11.5k times · Source

Quaternions are arguably an appropriate choice for representing object rotations internally. They are simple and efficient to interpolate and represent a single orientation unambiguously.

However, presenting quaternions in the user interface is generally inappropriate - Euler angles are generally much more familiar to users, and their values are a little more intuitive and predictable.

Euler angles suffer from being complicated at the code level - they require that an order of rotation is stored, and composing a practical orientation (be it matrix or quaternion) using this order and associated angles is cumbersome, to say the least.

Reliable interpolations are most conveniently performed using quaternion representation - so does this mean we must convert constantly between an Euler representation and a quaternion representation? Is this feasible in terms of performance?

Can we store the orientations as quaternions and convert them only for displayed to the user? This may not be possible because for any given orientation there is exactly one quaternion representation but many Euler representations. How do we 'pick' the Euler representation that corresponds to the one that originally defined that orientation? It seems like an impossible task - we've effectively lost information when converting to a quaternion.

Could we store as Euler angles and then convert to quaternions as needed? This probably isn't scalable - conversion from an Euler angle to a quaternion, interpolation, and then conversion back again is likely to be relatively expensive code.

Could we simply store both representations and use the most appropriate for any given situation? A large cost in terms of memory (imagine animation curves for a skeleton with around sixty bones) and keeping these values synchronised could be expensive, or at least cumbersome.

Has anybody seen, used or though up any clever solution to this problem? Surely the three options above aren't out only ones? Are there any other problem domains similar to this that have been solved?

Answer

noel hughes picture noel hughes · Jun 7, 2009

I am an aerospace engineer; I have been using quaternions for spacecraft attitude control and navigation for going on three decades. Here are some thoughts on your situation:

  1. Performing any kind of process that changes orientation with Euler angles is verging on impossible. Euler angles suffer from singularities - angles will instantaneously change by up to 180 degrees as other angles go through the singularity; Euler angles are virtually impossible to use for sequential rotations. Quaternions do not suffer from either of these problems
  2. There are 12 different possible Euler angle rotation sequences - XYZ, XYX, XZY, etc. There is no one "simplest" or "right" set of Euler angles. To derive a set of Euler angles, you must know which rotation sequence you are using and stick to it.
  3. I suggest you perform all storage and rotation operations with quaternions and only convert a quaternion to Euler angles when output is required. When you do this, you must define which Euler rotation sequence you are using.

I have algorithms for all these operations and many more: quaternions to/from Euler angles of any rotation sequence to/from rotation matrices (direction cosine matrices), quaternion interpolation matching position, rate, etc. at end or intermediate points, rigid and flexible body dynamics and kinematics using quaternions.

Please contact me if I can be of assistance at [email protected]