I want to find the parameters of ParamGridBuilder
that make the best model in CrossValidator in Spark 1.4.x,
In Pipeline Example in Spark documentation, they add different parameters (numFeatures
, regParam
) by using ParamGridBuilder
in the Pipeline. Then by the following line of code they make the best model:
val cvModel = crossval.fit(training.toDF)
Now, I want to know what are the parameters (numFeatures
, regParam
) from ParamGridBuilder
that produces the best model.
I already used the following commands without success:
cvModel.bestModel.extractParamMap().toString()
cvModel.params.toList.mkString("(", ",", ")")
cvModel.estimatorParamMaps.toString()
cvModel.explainParams()
cvModel.getEstimatorParamMaps.mkString("(", ",", ")")
cvModel.toString()
Any help?
Thanks in advance,
One method to get a proper ParamMap
object is to use CrossValidatorModel.avgMetrics: Array[Double]
to find the argmax ParamMap
:
implicit class BestParamMapCrossValidatorModel(cvModel: CrossValidatorModel) {
def bestEstimatorParamMap: ParamMap = {
cvModel.getEstimatorParamMaps
.zip(cvModel.avgMetrics)
.maxBy(_._2)
._1
}
}
When run on the CrossValidatorModel
trained in the Pipeline Example you cited gives:
scala> println(cvModel.bestEstimatorParamMap)
{
hashingTF_2b0b8ccaeeec-numFeatures: 100,
logreg_950a13184247-regParam: 0.1
}