Spark - load CSV file as DataFrame?

Donbeo picture Donbeo · Apr 17, 2015 · Viewed 412.1k times · Source

I would like to read a CSV in spark and convert it as DataFrame and store it in HDFS with df.registerTempTable("table_name")

I have tried:

scala> val df = sqlContext.load("hdfs:///csv/file/dir/file.csv")

Error which I got:

java.lang.RuntimeException: hdfs:///csv/file/dir/file.csv is not a Parquet file. expected magic number at tail [80, 65, 82, 49] but found [49, 59, 54, 10]
    at parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:418)
    at org.apache.spark.sql.parquet.ParquetRelation2$MetadataCache$$anonfun$refresh$6.apply(newParquet.scala:277)
    at org.apache.spark.sql.parquet.ParquetRelation2$MetadataCache$$anonfun$refresh$6.apply(newParquet.scala:276)
    at scala.collection.parallel.mutable.ParArray$Map.leaf(ParArray.scala:658)
    at scala.collection.parallel.Task$$anonfun$tryLeaf$1.apply$mcV$sp(Tasks.scala:54)
    at scala.collection.parallel.Task$$anonfun$tryLeaf$1.apply(Tasks.scala:53)
    at scala.collection.parallel.Task$$anonfun$tryLeaf$1.apply(Tasks.scala:53)
    at scala.collection.parallel.Task$class.tryLeaf(Tasks.scala:56)
    at scala.collection.parallel.mutable.ParArray$Map.tryLeaf(ParArray.scala:650)
    at scala.collection.parallel.AdaptiveWorkStealingTasks$WrappedTask$class.compute(Tasks.scala:165)
    at scala.collection.parallel.AdaptiveWorkStealingForkJoinTasks$WrappedTask.compute(Tasks.scala:514)
    at scala.concurrent.forkjoin.RecursiveAction.exec(RecursiveAction.java:160)
    at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
    at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
    at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
    at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)

What is the right command to load CSV file as DataFrame in Apache Spark?

Answer

Shyamendra Solanki picture Shyamendra Solanki · Apr 17, 2015

spark-csv is part of core Spark functionality and doesn't require a separate library. So you could just do for example

df = spark.read.format("csv").option("header", "true").load("csvfile.csv")

In scala,(this works for any format-in delimiter mention "," for csv, "\t" for tsv etc)

val df = sqlContext.read.format("com.databricks.spark.csv") .option("delimiter", ",") .load("csvfile.csv")