training set
trainSample <- cbind(data[1:980,1], data[1:980,2]) cl <-
factor(c(data[1:980,3]))
test set
testSample <- data(data[981:1485,1], data[981:1485,2])
cl.test <- clknn
prediction
k <- knn(trainSample, testSample, cl, k = 5)
output
< k
[1] 2 2 1 1 1 1 2 1 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 1 2 2 1 1 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2
[60] 2 2 2 2 1 2 2 2 2 1 2 2 1 2 2 2 1 1 2 1 2 2 1 1 1 2 1 2 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2
[119] 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 1 1 1 1 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 1 2 2 1 2 1 2 2 2 2
[178] 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1
[237] 2 2 2 2 2 1 2 2 1 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2 2 1 2 2 2 2 1 2 1 2 2 2 2 1 1 2 1 2 2 2 2 1 2 2 2
[296] 2 2 2 1 2 1 2 1 1 1 2 1 2 2 1 1 2 2 1 2 1 2 2 1 2 2 2 1 2 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 1 2 1 1 2 2 2 1 1 2
[355] 1 2 1 2 1 2 1 2 2 2 2 2 2 1 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
[414] 2 2 1 2 2 2 2 2 2 2 2 2 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[473] 2 2 2 2 2 1 1 2 2 2 2 2 1 2 2 1 1 2 2 1 2 2 1 2 1 2 2 1 2 2 2 2 2
Levels: 1 2
I want "c" and "not-c" (like in my original data.csv), instead of 1 and 2 (im also not sure which number is supposed to represent which)
Can anyone help ?
It is very easy to change the factor levels and also not get confused about which is which:
Example data:
> a <- factor(rep(c(1,2,1),50))
> a
[1] 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2
[75] 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1
[149] 2 1
Levels: 1 2
#this will help later as a verification
#this counts the instances for 1 and 2
> table(a)
a
1 2
100 50
So as you can see above the order of the levels is 1
first and 2
second. When you change the levels (below) the order remains the same:
#the assignment function levels can be used to change the levels
#the order will remain the same i.e. 'c' for '1' and 'not-c' for '2'
levels(a) <- c('c', 'not-c')
> a
[1] c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c
[25] c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c
[49] c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c
[73] c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c
[97] c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c
[121] c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c c not-c c
[145] c not-c c c not-c c
Levels: c not-c
And this is the verification:
> table(a)
a
c not-c
100 50