I have a dataset which has a few columns with categorical data.
I've been using the Categorical function to replace categorical values with numerical ones.
data[column] = pd.Categorical.from_array(data[column]).codes
I've recently ran across the pandas.get_dummies function. Are these interchangeable? Is there an advantage of using one over the other?
Why are you converting the categorical datas to integers? I don't believe you save memory if that is your goal.
df = pd.DataFrame({'cat': pd.Categorical(['a', 'a', 'a', 'b', 'b', 'c'])})
df2 = pd.DataFrame({'cat': [1, 1, 1, 2, 2, 3]})
>>> df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 6 entries, 0 to 5
Data columns (total 1 columns):
cat 6 non-null category
dtypes: category(1)
memory usage: 78.0 bytes
>>> df2.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 6 entries, 0 to 5
Data columns (total 1 columns):
cat 6 non-null int64
dtypes: int64(1)
memory usage: 96.0 bytes
The categorical codes are just integer values for the unique items in the given category. By contrast, get_dummies returns a new column for each unique item. The value in the column indicates whether or not the record has that attribute.
>>> pd.core.reshape.get_dummies(df)
Out[30]:
cat_a cat_b cat_c
0 1 0 0
1 1 0 0
2 1 0 0
3 0 1 0
4 0 1 0
5 0 0 1
To get the codes directly, you can use:
df['codes'] = [df.cat.codes.to_list()]