I am looking for for a pythonic way to handle the following problem.
The pandas.get_dummies()
method is great to create dummies from a categorical column of a dataframe. For example, if the column has values in ['A', 'B']
, get_dummies()
creates 2 dummy variables and assigns 0 or 1 accordingly.
Now, I need to handle this situation. A single column, let's call it 'label', has values like ['A', 'B', 'C', 'D', 'A*C', 'C*D']
. get_dummies()
creates 6 dummies, but I only want 4 of them, so that a row could have multiple 1s.
Is there a way to handle this in a pythonic way? I could only think of some step-by-step algorithm to get it, but that would not include get_dummies(). Thanks
Edited, hope it is more clear!
I know it's been a while since this question was asked, but there is (at least now there is) a one-liner that is supported by the documentation:
In [4]: df
Out[4]:
label
0 (a, c, e)
1 (a, d)
2 (b,)
3 (d, e)
In [5]: df['label'].str.join(sep='*').str.get_dummies(sep='*')
Out[5]:
a b c d e
0 1 0 1 0 1
1 1 0 0 1 0
2 0 1 0 0 0
3 0 0 0 1 1