What is the difference between UpSampling2D and Conv2DTranspose functions in keras?

Piyush  Chauhan picture Piyush Chauhan · Dec 6, 2018 · Viewed 17.4k times · Source

Here in this code UpSampling2D and Conv2DTranspose seem to be used interchangeably. I want to know why this is happening.

# u-net model with up-convolution or up-sampling and weighted binary-crossentropy as loss func

from keras.models import Model
from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout
from keras.optimizers import Adam
from keras.utils import plot_model
from keras import backend as K

def unet_model(n_classes=5, im_sz=160, n_channels=8, n_filters_start=32, growth_factor=2, upconv=True,
               class_weights=[0.2, 0.3, 0.1, 0.1, 0.3]):
    droprate=0.25
    n_filters = n_filters_start
    inputs = Input((im_sz, im_sz, n_channels))
    #inputs = BatchNormalization()(inputs)
    conv1 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(inputs)
    conv1 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
    #pool1 = Dropout(droprate)(pool1)

    n_filters *= growth_factor
    pool1 = BatchNormalization()(pool1)
    conv2 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(pool1)
    conv2 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
    pool2 = Dropout(droprate)(pool2)

    n_filters *= growth_factor
    pool2 = BatchNormalization()(pool2)
    conv3 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(pool2)
    conv3 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
    pool3 = Dropout(droprate)(pool3)

    n_filters *= growth_factor
    pool3 = BatchNormalization()(pool3)
    conv4_0 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(pool3)
    conv4_0 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv4_0)
    pool4_1 = MaxPooling2D(pool_size=(2, 2))(conv4_0)
    pool4_1 = Dropout(droprate)(pool4_1)

    n_filters *= growth_factor
    pool4_1 = BatchNormalization()(pool4_1)
    conv4_1 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(pool4_1)
    conv4_1 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv4_1)
    pool4_2 = MaxPooling2D(pool_size=(2, 2))(conv4_1)
    pool4_2 = Dropout(droprate)(pool4_2)

    n_filters *= growth_factor
    conv5 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(pool4_2)
    conv5 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv5)

    n_filters //= growth_factor
    if upconv:
        up6_1 = concatenate([Conv2DTranspose(n_filters, (2, 2), strides=(2, 2), padding='same')(conv5), conv4_1])
    else:
        up6_1 = concatenate([UpSampling2D(size=(2, 2))(conv5), conv4_1])
    up6_1 = BatchNormalization()(up6_1)
    conv6_1 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(up6_1)
    conv6_1 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv6_1)
    conv6_1 = Dropout(droprate)(conv6_1)

    n_filters //= growth_factor
    if upconv:
        up6_2 = concatenate([Conv2DTranspose(n_filters, (2, 2), strides=(2, 2), padding='same')(conv6_1), conv4_0])
    else:
        up6_2 = concatenate([UpSampling2D(size=(2, 2))(conv6_1), conv4_0])
    up6_2 = BatchNormalization()(up6_2)
    conv6_2 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(up6_2)
    conv6_2 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv6_2)
    conv6_2 = Dropout(droprate)(conv6_2)

    n_filters //= growth_factor
    if upconv:
        up7 = concatenate([Conv2DTranspose(n_filters, (2, 2), strides=(2, 2), padding='same')(conv6_2), conv3])
    else:
        up7 = concatenate([UpSampling2D(size=(2, 2))(conv6_2), conv3])
    up7 = BatchNormalization()(up7)
    conv7 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(up7)
    conv7 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv7)
    conv7 = Dropout(droprate)(conv7)

    n_filters //= growth_factor
    if upconv:
        up8 = concatenate([Conv2DTranspose(n_filters, (2, 2), strides=(2, 2), padding='same')(conv7), conv2])
    else:
        up8 = concatenate([UpSampling2D(size=(2, 2))(conv7), conv2])
    up8 = BatchNormalization()(up8)
    conv8 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(up8)
    conv8 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv8)
    conv8 = Dropout(droprate)(conv8)

    n_filters //= growth_factor
    if upconv:
        up9 = concatenate([Conv2DTranspose(n_filters, (2, 2), strides=(2, 2), padding='same')(conv8), conv1])
    else:
        up9 = concatenate([UpSampling2D(size=(2, 2))(conv8), conv1])
    conv9 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(up9)
    conv9 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv9)

    conv10 = Conv2D(n_classes, (1, 1), activation='sigmoid')(conv9)

    model = Model(inputs=inputs, outputs=conv10)

    def weighted_binary_crossentropy(y_true, y_pred):
        class_loglosses = K.mean(K.binary_crossentropy(y_true, y_pred), axis=[0, 1, 2])
        return K.sum(class_loglosses * K.constant(class_weights))

    model.compile(optimizer=Adam(), loss=weighted_binary_crossentropy)
    return model

Answer

Burton2000 picture Burton2000 · Dec 6, 2018

UpSampling2D is just a simple scaling up of the image by using nearest neighbour or bilinear upsampling, so nothing smart. Advantage is it's cheap.

Conv2DTranspose is a convolution operation whose kernel is learnt (just like normal conv2d operation) while training your model. Using Conv2DTranspose will also upsample its input but the key difference is the model should learn what is the best upsampling for the job.

EDIT: Link to nice visualization of transposed convolution: https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d