I am newbie in convolutional neural networks and just have idea about feature maps and how convolution is done on images to extract features. I would be glad to know some details on applying batch normalisation in CNN.
I read this paper https://arxiv.org/pdf/1502.03167v3.pdf and could understand the BN algorithm applied on a data but in the end they mentioned that a slight modification is required when applied to CNN:
For convolutional layers, we additionally want the normalization to obey the convolutional property – so that different elements of the same feature map, at different locations, are normalized in the same way. To achieve this, we jointly normalize all the activations in a mini- batch, over all locations. In Alg. 1, we let B be the set of all values in a feature map across both the elements of a mini-batch and spatial locations – so for a mini-batch of size m and feature maps of size p × q, we use the effec- tive mini-batch of size m′ = |B| = m · pq. We learn a pair of parameters γ(k) and β(k) per feature map, rather than per activation. Alg. 2 is modified similarly, so that during inference the BN transform applies the same linear transformation to each activation in a given feature map.
I am total confused when they say "so that different elements of the same feature map, at different locations, are normalized in the same way"
I know what feature maps mean and different elements are the weights in every feature map. But I could not understand what location or spatial location means.
I could not understand the below sentence at all "In Alg. 1, we let B be the set of all values in a feature map across both the elements of a mini-batch and spatial locations"
I would be glad if someone cold elaborate and explain me in much simpler terms
Let's start with the terms. Remember that the output of the convolutional layer is a 4-rank tensor [B, H, W, C]
, where B
is the batch size, (H, W)
is the feature map size, C
is the number of channels. An index (x, y)
where 0 <= x < H
and 0 <= y < W
is a spatial location.
Now, here's how the batchnorm is applied in a usual way (in pseudo-code):
# t is the incoming tensor of shape [B, H, W, C]
# mean and stddev are computed along 0 axis and have shape [H, W, C]
mean = mean(t, axis=0)
stddev = stddev(t, axis=0)
for i in 0..B-1:
out[i,:,:,:] = norm(t[i,:,:,:], mean, stddev)
Basically, it computes H*W*C
means and H*W*C
standard deviations across B
elements. You may notice that different elements at different spatial locations have their own mean and variance and gather only B
values.
This way is totally possible. But the convolutional layer has a special property: filter weights are shared across the input image (you can read it in detail in this post). That's why it's reasonable to normalize the output in the same way, so that each output value takes the mean and variance of B*H*W
values, at different locations.
Here's how the code looks like in this case (again pseudo-code):
# t is still the incoming tensor of shape [B, H, W, C]
# but mean and stddev are computed along (0, 1, 2) axes and have just [C] shape
mean = mean(t, axis=(0, 1, 2))
stddev = stddev(t, axis=(0, 1, 2))
for i in 0..B-1, x in 0..H-1, y in 0..W-1:
out[i,x,y,:] = norm(t[i,x,y,:], mean, stddev)
In total, there are only C
means and standard deviations and each one of them is computed over B*H*W
values. That's what they mean when they say "effective mini-batch": the difference between the two is only in axis selection (or equivalently "mini-batch selection").