I understand that the dot (or inner) product of two quaternions is the angle between the rotations (including the axis-rotation). This makes the dot product equal to the angle between two points on the quaternion hypersphere.
I can not, however, find how to actually compute the dot product.
Any help would be appreciated!
current code:
public static float dot(Quaternion left, Quaternion right){
float angle;
//compute
return angle;
}
Defined are Quaternion.w, Quaternion.x, Quaternion.y, and Quaternion.z.
Note: It can be assumed that the quaternions are normalised.
The dot product for quaternions is simply the standard Euclidean dot product in 4D:
dot = left.x * right.x + left.y * right.y + left.z * right.z + left.w * right.w
Then the angle your are looking for is the arccos
of the dot product (note that the dot product is not the angle): acos(dot)
.
However, if you are looking for the relative rotation between two quaternions, say from q1
to q2
, you should compute the relative quaternion q = q1^-1 * q2
and then find the rotation associated withq
.