Using Tensorflow's Connectionist Temporal Classification (CTC) implementation

Igor Macedo Quintanilha picture Igor Macedo Quintanilha · Jun 27, 2016 · Viewed 13.2k times · Source

I'm trying to use the Tensorflow's CTC implementation under contrib package (tf.contrib.ctc.ctc_loss) without success.

  • First of all, anyone know where can I read a good step-by-step tutorial? Tensorflow's documentation is very poor on this topic.
  • Do I have to provide to ctc_loss the labels with the blank label interleaved or not?
  • I could not be able to overfit my network even using a train dataset of length 1 over 200 epochs. :(
  • How can I calculate the label error rate using tf.edit_distance?

Here is my code:

with graph.as_default():

  max_length = X_train.shape[1]
  frame_size = X_train.shape[2]
  max_target_length = y_train.shape[1]

  # Batch size x time steps x data width
  data = tf.placeholder(tf.float32, [None, max_length, frame_size])
  data_length = tf.placeholder(tf.int32, [None])

  #  Batch size x max_target_length
  target_dense = tf.placeholder(tf.int32, [None, max_target_length])
  target_length = tf.placeholder(tf.int32, [None])

  #  Generating sparse tensor representation of target
  target = ctc_label_dense_to_sparse(target_dense, target_length)

  # Applying LSTM, returning output for each timestep (y_rnn1, 
  # [batch_size, max_time, cell.output_size]) and the final state of shape
  # [batch_size, cell.state_size]
  y_rnn1, h_rnn1 = tf.nn.dynamic_rnn(
    tf.nn.rnn_cell.LSTMCell(num_hidden, state_is_tuple=True, num_proj=num_classes), #  num_proj=num_classes
    data,
    dtype=tf.float32,
    sequence_length=data_length,
  )

  #  For sequence labelling, we want a prediction for each timestamp. 
  #  However, we share the weights for the softmax layer across all timesteps. 
  #  How do we do that? By flattening the first two dimensions of the output tensor. 
  #  This way time steps look the same as examples in the batch to the weight matrix. 
  #  Afterwards, we reshape back to the desired shape


  # Reshaping
  logits = tf.transpose(y_rnn1, perm=(1, 0, 2))

  #  Get the loss by calculating ctc_loss
  #  Also calculates
  #  the gradient.  This class performs the softmax operation for you, so    inputs
  #  should be e.g. linear projections of outputs by an LSTM.
  loss = tf.reduce_mean(tf.contrib.ctc.ctc_loss(logits, target, data_length))

  #  Define our optimizer with learning rate
  optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(loss)

  #  Decoding using beam search
  decoded, log_probabilities = tf.contrib.ctc.ctc_beam_search_decoder(logits, data_length, beam_width=10, top_paths=1)

Thanks!

Update (06/29/2016)

Thank you, @jihyeon-seo! So, we have at input of RNN something like [num_batch, max_time_step, num_features]. We use the dynamic_rnn to perform the recurrent calculations given the input, outputting a tensor of shape [num_batch, max_time_step, num_hidden]. After that, we need to do an affine projection in each tilmestep with weight sharing, so we've to reshape to [num_batch*max_time_step, num_hidden], multiply by a weight matrix of shape [num_hidden, num_classes], sum a bias undo the reshape, transpose (so we will have [max_time_steps, num_batch, num_classes] for ctc loss input), and this result will be the input of ctc_loss function. Did I do everything correct?

This is the code:

    cell = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers, state_is_tuple=True)

    h_rnn1, self.last_state = tf.nn.dynamic_rnn(cell, self.input_data, self.sequence_length, dtype=tf.float32)

    #  Reshaping to share weights accross timesteps
    x_fc1 = tf.reshape(h_rnn1, [-1, num_hidden])

    self._logits = tf.matmul(x_fc1, self._W_fc1) + self._b_fc1

    #  Reshaping
    self._logits = tf.reshape(self._logits, [max_length, -1, num_classes])

    #  Calculating loss
    loss = tf.contrib.ctc.ctc_loss(self._logits, self._targets, self.sequence_length)

    self.cost = tf.reduce_mean(loss)

Update (07/11/2016)

Thank you @Xiv. Here is the code after the bug fix:

    cell = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers, state_is_tuple=True)

    h_rnn1, self.last_state = tf.nn.dynamic_rnn(cell, self.input_data, self.sequence_length, dtype=tf.float32)

    #  Reshaping to share weights accross timesteps
    x_fc1 = tf.reshape(h_rnn1, [-1, num_hidden])

    self._logits = tf.matmul(x_fc1, self._W_fc1) + self._b_fc1

    #  Reshaping
    self._logits = tf.reshape(self._logits, [-1, max_length, num_classes])
    self._logits = tf.transpose(self._logits, (1,0,2))

    #  Calculating loss
    loss = tf.contrib.ctc.ctc_loss(self._logits, self._targets, self.sequence_length)

    self.cost = tf.reduce_mean(loss)

Update (07/25/16)

I published on GitHub part of my code, working with one utterance. Feel free to use! :)

Answer

Jon Rein picture Jon Rein · Jul 13, 2016

See here for an example with bidirectional LSTM, CTC, and edit distance implementations, training a phoneme recognition model on the TIMIT corpus. If you train on that corpus's training set, you should be able to get phoneme error rates down to 20-25% after 120 epochs or so.