I'm trying to use the Tensorflow's CTC implementation under contrib package (tf.contrib.ctc.ctc_loss) without success.
Here is my code:
with graph.as_default():
max_length = X_train.shape[1]
frame_size = X_train.shape[2]
max_target_length = y_train.shape[1]
# Batch size x time steps x data width
data = tf.placeholder(tf.float32, [None, max_length, frame_size])
data_length = tf.placeholder(tf.int32, [None])
# Batch size x max_target_length
target_dense = tf.placeholder(tf.int32, [None, max_target_length])
target_length = tf.placeholder(tf.int32, [None])
# Generating sparse tensor representation of target
target = ctc_label_dense_to_sparse(target_dense, target_length)
# Applying LSTM, returning output for each timestep (y_rnn1,
# [batch_size, max_time, cell.output_size]) and the final state of shape
# [batch_size, cell.state_size]
y_rnn1, h_rnn1 = tf.nn.dynamic_rnn(
tf.nn.rnn_cell.LSTMCell(num_hidden, state_is_tuple=True, num_proj=num_classes), # num_proj=num_classes
data,
dtype=tf.float32,
sequence_length=data_length,
)
# For sequence labelling, we want a prediction for each timestamp.
# However, we share the weights for the softmax layer across all timesteps.
# How do we do that? By flattening the first two dimensions of the output tensor.
# This way time steps look the same as examples in the batch to the weight matrix.
# Afterwards, we reshape back to the desired shape
# Reshaping
logits = tf.transpose(y_rnn1, perm=(1, 0, 2))
# Get the loss by calculating ctc_loss
# Also calculates
# the gradient. This class performs the softmax operation for you, so inputs
# should be e.g. linear projections of outputs by an LSTM.
loss = tf.reduce_mean(tf.contrib.ctc.ctc_loss(logits, target, data_length))
# Define our optimizer with learning rate
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(loss)
# Decoding using beam search
decoded, log_probabilities = tf.contrib.ctc.ctc_beam_search_decoder(logits, data_length, beam_width=10, top_paths=1)
Thanks!
Update (06/29/2016)
Thank you, @jihyeon-seo! So, we have at input of RNN something like [num_batch, max_time_step, num_features]. We use the dynamic_rnn to perform the recurrent calculations given the input, outputting a tensor of shape [num_batch, max_time_step, num_hidden]. After that, we need to do an affine projection in each tilmestep with weight sharing, so we've to reshape to [num_batch*max_time_step, num_hidden], multiply by a weight matrix of shape [num_hidden, num_classes], sum a bias undo the reshape, transpose (so we will have [max_time_steps, num_batch, num_classes] for ctc loss input), and this result will be the input of ctc_loss function. Did I do everything correct?
This is the code:
cell = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers, state_is_tuple=True)
h_rnn1, self.last_state = tf.nn.dynamic_rnn(cell, self.input_data, self.sequence_length, dtype=tf.float32)
# Reshaping to share weights accross timesteps
x_fc1 = tf.reshape(h_rnn1, [-1, num_hidden])
self._logits = tf.matmul(x_fc1, self._W_fc1) + self._b_fc1
# Reshaping
self._logits = tf.reshape(self._logits, [max_length, -1, num_classes])
# Calculating loss
loss = tf.contrib.ctc.ctc_loss(self._logits, self._targets, self.sequence_length)
self.cost = tf.reduce_mean(loss)
Update (07/11/2016)
Thank you @Xiv. Here is the code after the bug fix:
cell = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers, state_is_tuple=True)
h_rnn1, self.last_state = tf.nn.dynamic_rnn(cell, self.input_data, self.sequence_length, dtype=tf.float32)
# Reshaping to share weights accross timesteps
x_fc1 = tf.reshape(h_rnn1, [-1, num_hidden])
self._logits = tf.matmul(x_fc1, self._W_fc1) + self._b_fc1
# Reshaping
self._logits = tf.reshape(self._logits, [-1, max_length, num_classes])
self._logits = tf.transpose(self._logits, (1,0,2))
# Calculating loss
loss = tf.contrib.ctc.ctc_loss(self._logits, self._targets, self.sequence_length)
self.cost = tf.reduce_mean(loss)
Update (07/25/16)
I published on GitHub part of my code, working with one utterance. Feel free to use! :)