I need to convert my dataframe to a dataset and I used the following code:
val final_df = Dataframe.withColumn(
"features",
toVec4(
// casting into Timestamp to parse the string, and then into Int
$"time_stamp_0".cast(TimestampType).cast(IntegerType),
$"count",
$"sender_ip_1",
$"receiver_ip_2"
)
).withColumn("label", (Dataframe("count"))).select("features", "label")
final_df.show()
val trainingTest = final_df.randomSplit(Array(0.3, 0.7))
val TrainingDF = trainingTest(0)
val TestingDF=trainingTest(1)
TrainingDF.show()
TestingDF.show()
///lets create our liner regression
val lir= new LinearRegression()
.setRegParam(0.3)
.setElasticNetParam(0.8)
.setMaxIter(100)
.setTol(1E-6)
case class df_ds(features:Vector, label:Integer)
org.apache.spark.sql.catalyst.encoders.OuterScopes.addOuterScope(this)
val Training_ds = TrainingDF.as[df_ds]
My problem is that, I got the following error:
Error:(96, 36) Unable to find encoder for type stored in a Dataset. Primitive types (Int, String, etc) and Product types (case classes) are supported by importing spark.implicits._ Support for serializing other types will be added in future releases.
val Training_ds = TrainingDF.as[df_ds]
It seems that the number of values in dataframe is different with the number of value in my class. However I am using case class df_ds(features:Vector, label:Integer)
on my TrainingDF dataframe since, It has a vector of features and an integer label. Here is TrainingDF dataframe:
+--------------------+-----+
| features|label|
+--------------------+-----+
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,19...| 19|
|[1.497325796E9,10...| 10|
+--------------------+-----+
Also here is my original final_df dataframe:
+------------+-----------+-------------+-----+
|time_stamp_0|sender_ip_1|receiver_ip_2|count|
+------------+-----------+-------------+-----+
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.2| 10.0.0.3| 19|
| 05:49:56| 10.0.0.3| 10.0.0.2| 10|
+------------+-----------+-------------+-----+
However I got the mentioned error! Can anybody help me? Thanks in advance.
The error message you are reading is a pretty good pointer.
When you convert a DataFrame
to a Dataset
you have to have a proper Encoder
for whatever is stored in the DataFrame
rows.
Encoders for primitive-like types (Int
s, String
s, and so on) and case classes
are provided by just importing the implicits for your SparkSession
like follows:
case class MyData(intField: Int, boolField: Boolean) // e.g.
val spark: SparkSession = ???
val df: DataFrame = ???
import spark.implicits._
val ds: Dataset[MyData] = df.as[MyData]
If that doesn't work either is because the type you are trying to cast the DataFrame
to isn't supported. In that case, you would have to write your own Encoder
: you may find more information about it here and see an example (the Encoder
for java.time.LocalDateTime
) here.