I used this code
My error is:
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
17/02/03 20:39:24 INFO SparkContext: Running Spark version 2.1.0
17/02/03 20:39:25 WARN NativeCodeLoader: Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable
17/02/03 20:39:25 WARN SparkConf: Detected deprecated memory fraction
settings: [spark.storage.memoryFraction]. As of Spark 1.6, execution and
storage memory management are unified. All memory fractions used in the old
model are now deprecated and no longer read. If you wish to use the old
memory management, you may explicitly enable `spark.memory.useLegacyMode`
(not recommended).
17/02/03 20:39:25 ERROR SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: A master URL must be set in your
configuration
at org.apache.spark.SparkContext.<init>(SparkContext.scala:379)
at PCA$.main(PCA.scala:26)
at PCA.main(PCA.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)
17/02/03 20:39:25 INFO SparkContext: Successfully stopped SparkContext
Exception in thread "main" org.apache.spark.SparkException: A master URL must be set in your configuration
at org.apache.spark.SparkContext.<init>(SparkContext.scala:379)
at PCA$.main(PCA.scala:26)
at PCA.main(PCA.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)
Process finished with exit code 1
If you are running spark stand alone then
val conf = new SparkConf().setMaster("spark://master") //missing
and you can pass parameter while submit job
spark-submit --master spark://master
If you are running spark local then
val conf = new SparkConf().setMaster("local[2]") //missing
you can pass parameter while submit job
spark-submit --master local
if you are running spark on yarn then
spark-submit --master yarn