I currently have code in which I repeatedly apply the same procedure to multiple DataFrame Columns via multiple chains of .withColumn, and am wanting to create a function to streamline the procedure. In my case, I am finding cumulative sums over columns aggregated by keys:
val newDF = oldDF
.withColumn("cumA", sum("A").over(Window.partitionBy("ID").orderBy("time")))
.withColumn("cumB", sum("B").over(Window.partitionBy("ID").orderBy("time")))
.withColumn("cumC", sum("C").over(Window.partitionBy("ID").orderBy("time")))
//.withColumn(...)
What I would like is either something like:
def createCumulativeColums(cols: Array[String], df: DataFrame): DataFrame = {
// Implement the above cumulative sums, partitioning, and ordering
}
or better yet:
def withColumns(cols: Array[String], df: DataFrame, f: function): DataFrame = {
// Implement a udf/arbitrary function on all the specified columns
}
You can use select
with varargs including *
:
import spark.implicits._
df.select($"*" +: Seq("A", "B", "C").map(c =>
sum(c).over(Window.partitionBy("ID").orderBy("time")).alias(s"cum$c")
): _*)
This:
Seq("A", ...).map(...)
$"*" +: ...
.... : _*
.and can be generalized as:
import org.apache.spark.sql.{Column, DataFrame}
/**
* @param cols a sequence of columns to transform
* @param df an input DataFrame
* @param f a function to be applied on each col in cols
*/
def withColumns(cols: Seq[String], df: DataFrame, f: String => Column) =
df.select($"*" +: cols.map(c => f(c)): _*)
If you find withColumn
syntax more readable you can use foldLeft
:
Seq("A", "B", "C").foldLeft(df)((df, c) =>
df.withColumn(s"cum$c", sum(c).over(Window.partitionBy("ID").orderBy("time")))
)
which can be generalized for example to:
/**
* @param cols a sequence of columns to transform
* @param df an input DataFrame
* @param f a function to be applied on each col in cols
* @param name a function mapping from input to output name.
*/
def withColumns(cols: Seq[String], df: DataFrame,
f: String => Column, name: String => String = identity) =
cols.foldLeft(df)((df, c) => df.withColumn(name(c), f(c)))