I have a DataFrame
that looks like follow:
userID, category, frequency
1,cat1,1
1,cat2,3
1,cat9,5
2,cat4,6
2,cat9,2
2,cat10,1
3,cat1,5
3,cat7,16
3,cat8,2
The number of distinct categories is 10, and I would like to create a feature vector for each userID
and fill the missing categories with zeros.
So the output would be something like:
userID,feature
1,[1,3,0,0,0,0,0,0,5,0]
2,[0,0,0,6,0,0,0,0,2,1]
3,[5,0,0,0,0,0,16,2,0,0]
It is just an illustrative example, in reality I have about 200,000 unique userID and and 300 unique category.
What is the most efficient way to create the features DataFrame
?
A little bit more DataFrame
centric solution:
import org.apache.spark.ml.feature.VectorAssembler
val df = sc.parallelize(Seq(
(1, "cat1", 1), (1, "cat2", 3), (1, "cat9", 5), (2, "cat4", 6),
(2, "cat9", 2), (2, "cat10", 1), (3, "cat1", 5), (3, "cat7", 16),
(3, "cat8", 2))).toDF("userID", "category", "frequency")
// Create a sorted array of categories
val categories = df
.select($"category")
.distinct.map(_.getString(0))
.collect
.sorted
// Prepare vector assemble
val assembler = new VectorAssembler()
.setInputCols(categories)
.setOutputCol("features")
// Aggregation expressions
val exprs = categories.map(
c => sum(when($"category" === c, $"frequency").otherwise(lit(0))).alias(c))
val transformed = assembler.transform(
df.groupBy($"userID").agg(exprs.head, exprs.tail: _*))
.select($"userID", $"features")
and an UDAF alternative:
import org.apache.spark.sql.expressions.{
MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.types.{
StructType, ArrayType, DoubleType, IntegerType}
import scala.collection.mutable.WrappedArray
class VectorAggregate (n: Int) extends UserDefinedAggregateFunction {
def inputSchema = new StructType()
.add("i", IntegerType)
.add("v", DoubleType)
def bufferSchema = new StructType().add("buff", ArrayType(DoubleType))
def dataType = new VectorUDT()
def deterministic = true
def initialize(buffer: MutableAggregationBuffer) = {
buffer.update(0, Array.fill(n)(0.0))
}
def update(buffer: MutableAggregationBuffer, input: Row) = {
if (!input.isNullAt(0)) {
val i = input.getInt(0)
val v = input.getDouble(1)
val buff = buffer.getAs[WrappedArray[Double]](0)
buff(i) += v
buffer.update(0, buff)
}
}
def merge(buffer1: MutableAggregationBuffer, buffer2: Row) = {
val buff1 = buffer1.getAs[WrappedArray[Double]](0)
val buff2 = buffer2.getAs[WrappedArray[Double]](0)
for ((x, i) <- buff2.zipWithIndex) {
buff1(i) += x
}
buffer1.update(0, buff1)
}
def evaluate(buffer: Row) = Vectors.dense(
buffer.getAs[Seq[Double]](0).toArray)
}
with example usage:
import org.apache.spark.ml.feature.StringIndexer
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("category_idx")
.fit(df)
val indexed = indexer.transform(df)
.withColumn("category_idx", $"category_idx".cast("integer"))
.withColumn("frequency", $"frequency".cast("double"))
val n = indexer.labels.size + 1
val transformed = indexed
.groupBy($"userID")
.agg(new VectorAggregate(n)($"category_idx", $"frequency").as("vec"))
transformed.show
// +------+--------------------+
// |userID| vec|
// +------+--------------------+
// | 1|[1.0,5.0,0.0,3.0,...|
// | 2|[0.0,2.0,0.0,0.0,...|
// | 3|[5.0,0.0,16.0,0.0...|
// +------+--------------------+
In this case order of values is defined by indexer.labels
:
indexer.labels
// Array[String] = Array(cat1, cat9, cat7, cat2, cat8, cat4, cat10)
In practice I would prefer solution by Odomontois so these are provided mostly for reference.