Consider the code given here,
https://spark.apache.org/docs/1.2.0/ml-guide.html
import org.apache.spark.ml.classification.LogisticRegression
val training = sparkContext.parallelize(Seq(
LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)),
LabeledPoint(0.0, Vectors.dense(2.0, 1.0, -1.0)),
LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)),
LabeledPoint(1.0, Vectors.dense(0.0, 1.2, -0.5))))
val lr = new LogisticRegression()
lr.setMaxIter(10).setRegParam(0.01)
val model1 = lr.fit(training)
Assuming we read "training" as a dataframe using sqlContext.read(), should we still do something like
val model1 = lr.fit(sparkContext.parallelize(training)) // or some variation of this
or the fit function will automatically take care of parallelizing the computation/ data when passed a dataFrame
Regards,
DataFrame
is a distributed data structure. It is neither required nor possible to parallelize
it. SparkConext.parallelize
method is used only to distributed local data structures which reside in the driver memory. You shouldn't be used to distributed large datasets not to mention redistributing RDDs
or higher level data structures (like you do in your previous question)
sc.parallelize(trainingData.collect())
If you want to convert between RDD
/ Dataframe
(Dataset
) use methods which are designed to do it:
from DataFrame
to RDD
:
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.Row
import org.apache.spark.rdd.RDD
val df: DataFrame = Seq(("foo", 1), ("bar", 2)).toDF("k", "v")
val rdd: RDD[Row] = df.rdd
form RDD
to DataFrame
:
val rdd: RDD[(String, Int)] = sc.parallelize(Seq(("foo", 1), ("bar", 2)))
val df1: DataFrame = rdd.toDF
// or
val df2: DataFrame = spark.createDataFrame(rdd) // From 1.x use sqlContext