Spark Multiclass Classification Example

deniswsrosa picture deniswsrosa · Aug 15, 2015 · Viewed 13k times · Source

Do you guys know where can I find examples of multiclass classification in Spark. I spent a lot of time searching in books and in the web, and so far I just know that it is possible since the latest version according the documentation.

Answer

zero323 picture zero323 · Aug 16, 2015

ML

(Recommended in Spark 2.0+)

We'll use the same data as in the MLlib below. There are two basic options. If Estimator supports multilclass classification out-of-the-box (for example random forest) you can use it directly:

val trainRawDf = trainRaw.toDF

import org.apache.spark.ml.feature.{Tokenizer, CountVectorizer, StringIndexer}
import org.apache.spark.ml.Pipeline

import org.apache.spark.ml.classification.RandomForestClassifier

val transformers = Array(
  new StringIndexer().setInputCol("group").setOutputCol("label"),
  new Tokenizer().setInputCol("text").setOutputCol("tokens"),
  new CountVectorizer().setInputCol("tokens").setOutputCol("features")
)


val rf = new RandomForestClassifier() 
  .setLabelCol("label")
  .setFeaturesCol("features")

val model = new Pipeline().setStages(transformers :+ rf).fit(trainRawDf)

model.transform(trainRawDf)

If model supports only binary classification (logistic regression) and extends o.a.s.ml.classification.Classifier you can use one-vs-rest strategy:

import org.apache.spark.ml.classification.OneVsRest
import org.apache.spark.ml.classification.LogisticRegression

val lr = new LogisticRegression() 
  .setLabelCol("label")
  .setFeaturesCol("features")

val ovr = new OneVsRest().setClassifier(lr)

val ovrModel = new Pipeline().setStages(transformers :+ ovr).fit(trainRawDf)

MLLib

According to the official documentation at this moment (MLlib 1.6.0) following methods support multiclass classification:

  • logistic regression,
  • decision trees,
  • random forests,
  • naive Bayes

At least some of the examples use multiclass classification:

General framework, ignoring method specific arguments, is pretty much the same as for all the other methods in MLlib. You have to pre-processes your input to create either data frame with columns representing label and features:

root
 |-- label: double (nullable = true)
 |-- features: vector (nullable = true)

or RDD[LabeledPoint].

Spark provides broad range of useful tools designed to facilitate this process including Feature Extractors and Feature Transformers and pipelines.

You'll find a rather naive example of using Random Forest below.

First lets import required packages and create dummy data:

import sqlContext.implicits._
import org.apache.spark.ml.feature.{HashingTF, Tokenizer} 
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.ml.feature.StringIndexer
import org.apache.spark.mllib.tree.RandomForest
import org.apache.spark.mllib.tree.model.RandomForestModel
import org.apache.spark.mllib.linalg.{Vectors, Vector}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.sql.Row
import org.apache.spark.rdd.RDD

case class LabeledRecord(group: String, text: String)

val trainRaw = sc.parallelize(
    LabeledRecord("foo", "foo v a y b  foo") ::
    LabeledRecord("bar", "x bar y bar v") ::
    LabeledRecord("bar", "x a y bar z") ::
    LabeledRecord("foobar", "foo v b bar z") ::
    LabeledRecord("foo", "foo x") ::
    LabeledRecord("foobar", "z y x foo a b bar v") ::
    Nil
)

Now let's define required transformers and process train Dataset:

// Tokenizer to process text fields
val tokenizer = new Tokenizer()
    .setInputCol("text")
    .setOutputCol("words")

// HashingTF to convert tokens to the feature vector
val hashingTF = new HashingTF()
    .setInputCol("words")
    .setOutputCol("features")
    .setNumFeatures(10)

// Indexer to convert String labels to Double
val indexer = new StringIndexer()
    .setInputCol("group")
    .setOutputCol("label")
    .fit(trainRaw.toDF)


def transfom(rdd: RDD[LabeledRecord]) = {
    val tokenized = tokenizer.transform(rdd.toDF)
    val hashed = hashingTF.transform(tokenized)
    val indexed = indexer.transform(hashed)
    indexed
        .select($"label", $"features")
        .map{case Row(label: Double, features: Vector) =>
            LabeledPoint(label, features)}
}

val train: RDD[LabeledPoint] = transfom(trainRaw)

Please note that indexer is "fitted" on the train data. It simply means that categorical values used as the labels are converted to doubles. To use classifier on a new data you have to transform it first using this indexer.

Next we can train RF model:

val numClasses = 3
val categoricalFeaturesInfo = Map[Int, Int]()
val numTrees = 10
val featureSubsetStrategy = "auto"
val impurity = "gini"
val maxDepth = 4
val maxBins = 16

val model = RandomForest.trainClassifier(
    train, numClasses, categoricalFeaturesInfo, 
    numTrees, featureSubsetStrategy, impurity,
    maxDepth, maxBins
)

and finally test it:

val testRaw = sc.parallelize(
    LabeledRecord("foo", "foo  foo z z z") ::
    LabeledRecord("bar", "z bar y y v") ::
    LabeledRecord("bar", "a a  bar a z") ::
    LabeledRecord("foobar", "foo v b bar z") ::
    LabeledRecord("foobar", "a foo a bar") ::
    Nil
)

val test: RDD[LabeledPoint] = transfom(testRaw)

val predsAndLabs = test.map(lp => (model.predict(lp.features), lp.label))
val metrics = new MulticlassMetrics(predsAndLabs)

metrics.precision
metrics.recall