I have the following code in Spark:
myData.filter(t => t.getMyEnum() == null)
.map(t => t.toString)
.saveAsTextFile("myOutput")
There are 2000+ files in the myOutput folder, but only a few t.getMyEnum() == null, so there are only very few output records. Since I don't want to search just a few outputs in 2000+ output files, I tried to combine the output using coalesce like below:
myData.filter(t => t.getMyEnum() == null)
.map(t => t.toString)
.coalesce(1, false)
.saveAsTextFile("myOutput")
Then the job becomes EXTREMELY SLOW! I am wondering why it is so slow? There was just a few output records scattering in 2000+ partitions? Is there a better way to solve this problem?
if you're doing a drastic coalesce, e.g. to numPartitions = 1, this may result in your computation taking place on fewer nodes than you like (e.g. one node in the case of numPartitions = 1). To avoid this, you can pass shuffle = true. This will add a shuffle step, but means the current upstream partitions will be executed in parallel (per whatever the current partitioning is).
Note: With shuffle = true, you can actually coalesce to a larger number of partitions. This is useful if you have a small number of partitions, say 100, potentially with a few partitions being abnormally large. Calling coalesce(1000, shuffle = true) will result in 1000 partitions with the data distributed using a hash partitioner.
So try by passing the true to coalesce
function. i.e.
myData.filter(_.getMyEnum == null)
.map(_.toString)
.coalesce(1, shuffle = true)
.saveAsTextFile("myOutput")