In my data, there exist observations for some IDs in some months and not for others, e.g.
dat <- data.frame(c(1, 1, 1, 2, 3, 3, 3, 4, 4, 4), c(rep(30, 2), rep(25, 5), rep(20, 3)), c('2017-01-01', '2017-02-01', '2017-04-01', '2017-02-01', '2017-01-01', '2017-02-01', '2017-03-01', '2017-01-01',
'2017-02-01', '2017-04-01'))
colnames(dat) <- c('id', 'value', 'date')
I would like to, for each id
value, insert a row that includes the month(s) missing for that id
and NA
for value
.
Is there a way to (somewhat) concisely do this for all months in seq(min(as.Date(dat$date)), max(as.Date(dat$date)), by = 'months')
? I often use tidyverse and data.table, but am open to any approach.
tidyr::complete()
fills missing values
add id
and date
as the columns (...
) to expand for
library(tidyverse)
complete(dat, id, date)
# A tibble: 16 x 3
id date value
<dbl> <date> <dbl>
1 1.00 2017-01-01 30.0
2 1.00 2017-02-01 30.0
3 1.00 2017-03-01 NA
4 1.00 2017-04-01 25.0
5 2.00 2017-01-01 NA
6 2.00 2017-02-01 25.0
7 2.00 2017-03-01 NA
8 2.00 2017-04-01 NA
9 3.00 2017-01-01 25.0
10 3.00 2017-02-01 25.0
11 3.00 2017-03-01 25.0
12 3.00 2017-04-01 NA
13 4.00 2017-01-01 20.0
14 4.00 2017-02-01 20.0
15 4.00 2017-03-01 NA
16 4.00 2017-04-01 20.0