I have a data frame which is arranged by descending order of date.
ps1 = data.frame(userID = c(21,21,21,22,22,22,23,23,23),
color = c(NA,'blue','red','blue',NA,NA,'red',NA,'gold'),
age = c('3yrs','2yrs',NA,NA,'3yrs',NA,NA,'4yrs',NA),
gender = c('F',NA,'M',NA,NA,'F','F',NA,'F')
)
I wish to impute(replace) NA values with previous values and grouped by userID In case the first row of a userID has NA then replace with the next set of values for that userid group.
I am trying to use dplyr and zoo packages something like this...but its not working
cleanedFUG <- filteredUserGroup %>%
group_by(UserID) %>%
mutate(Age1 = na.locf(Age),
Color1 = na.locf(Color),
Gender1 = na.locf(Gender) )
I need result df like this:
userID color age gender
1 21 blue 3yrs F
2 21 blue 2yrs F
3 21 red 2yrs M
4 22 blue 3yrs F
5 22 blue 3yrs F
6 22 blue 3yrs F
7 23 red 4yrs F
8 23 red 4yrs F
9 23 gold 4yrs F
require(tidyverse) #fill is part of tidyr
ps1 %>%
group_by(userID) %>%
fill(color, age, gender) %>% #default direction down
fill(color, age, gender, .direction = "up")
Which gives you:
Source: local data frame [9 x 4]
Groups: userID [3]
userID color age gender
<dbl> <fctr> <fctr> <fctr>
1 21 blue 3yrs F
2 21 blue 2yrs F
3 21 red 2yrs M
4 22 blue 3yrs F
5 22 blue 3yrs F
6 22 blue 3yrs F
7 23 red 4yrs F
8 23 red 4yrs F
9 23 gold 4yrs F