I have a dataframe in a wide format, with repeated measurements taken within different date ranges. In my example there are three different periods, all with their corresponding values. E.g. the first measurement (Value1
) was measured in the period from DateRange1Start
to DateRange1End
:
ID DateRange1Start DateRange1End Value1 DateRange2Start DateRange2End Value2 DateRange3Start DateRange3End Value3
1 1/1/90 3/1/90 4.4 4/5/91 6/7/91 6.2 5/5/95 6/6/96 3.3
I'm looking to reshape the data to a long format such that the DateRangeXStart and DateRangeXEnd columns are grouped,. Thus, what was 1 row in the original table becomes 3 rows in the new table:
ID DateRangeStart DateRangeEnd Value
1 1/1/90 3/1/90 4.4
1 4/5/91 6/7/91 6.2
1 5/5/95 6/6/96 3.3
I know there must be a way to do this with reshape2
/melt
/recast
/tidyr
, but I can't seem to figure it out how to map the multiple sets of measure variables into single sets of value columns in this particular way.
reshape(dat, idvar="ID", direction="long",
varying=list(Start=c(2,5,8), End=c(3,6,9), Value=c(4,7,10)),
v.names = c("DateRangeStart", "DateRangeEnd", "Value") )
#-------------
ID time DateRangeStart DateRangeEnd Value
1.1 1 1 1/1/90 3/1/90 4.4
1.2 1 2 4/5/91 6/7/91 6.2
1.3 1 3 5/5/95 6/6/96 3.3
(Added the v.names per Josh's suggestion.)