I have the following code in Keras (Basically I am modifying this code for my use) and I get this error:
'ValueError: Error when checking target: expected conv3d_3 to have 5 dimensions, but got array with shape (10, 4096)'
Code:
from keras.models import Sequential
from keras.layers.convolutional import Conv3D
from keras.layers.convolutional_recurrent import ConvLSTM2D
from keras.layers.normalization import BatchNormalization
import numpy as np
import pylab as plt
from keras import layers
# We create a layer which take as input movies of shape
# (n_frames, width, height, channels) and returns a movie
# of identical shape.
model = Sequential()
model.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
input_shape=(None, 64, 64, 1),
padding='same', return_sequences=True))
model.add(BatchNormalization())
model.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
padding='same', return_sequences=True))
model.add(BatchNormalization())
model.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
padding='same', return_sequences=True))
model.add(BatchNormalization())
model.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
padding='same', return_sequences=True))
model.add(BatchNormalization())
model.add(Conv3D(filters=1, kernel_size=(3, 3, 3),
activation='sigmoid',
padding='same', data_format='channels_last'))
model.compile(loss='binary_crossentropy', optimizer='adadelta')
the data I feed is in the following format: [1, 10, 64, 64, 1]. So I would like to know where I am wrong and also how to see the output_shape of each layer.
You can get the output shape of a layer by layer.output_shape
.
for layer in model.layers:
print(layer.output_shape)
Gives you:
(None, None, 64, 64, 40)
(None, None, 64, 64, 40)
(None, None, 64, 64, 40)
(None, None, 64, 64, 40)
(None, None, 64, 64, 40)
(None, None, 64, 64, 40)
(None, None, 64, 64, 40)
(None, None, 64, 64, 40)
(None, None, 64, 64, 1)
Alternatively you can pretty print the model using model.summary
:
model.summary()
Gives you the details about the number of parameters and output shapes of each layer and an overall model structure in a pretty format:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv_lst_m2d_1 (ConvLSTM2D) (None, None, 64, 64, 40) 59200
_________________________________________________________________
batch_normalization_1 (Batch (None, None, 64, 64, 40) 160
_________________________________________________________________
conv_lst_m2d_2 (ConvLSTM2D) (None, None, 64, 64, 40) 115360
_________________________________________________________________
batch_normalization_2 (Batch (None, None, 64, 64, 40) 160
_________________________________________________________________
conv_lst_m2d_3 (ConvLSTM2D) (None, None, 64, 64, 40) 115360
_________________________________________________________________
batch_normalization_3 (Batch (None, None, 64, 64, 40) 160
_________________________________________________________________
conv_lst_m2d_4 (ConvLSTM2D) (None, None, 64, 64, 40) 115360
_________________________________________________________________
batch_normalization_4 (Batch (None, None, 64, 64, 40) 160
_________________________________________________________________
conv3d_1 (Conv3D) (None, None, 64, 64, 1) 1081
=================================================================
Total params: 407,001
Trainable params: 406,681
Non-trainable params: 320
_________________________________________________________________
If you want to access information about a specific layer only, you can use name
argument when constructing that layer and then call like this:
...
model.add(ConvLSTM2D(..., name='conv3d_0'))
...
model.get_layer('conv3d_0')
EDIT: For reference sake it will always be same as layer.output_shape
and please don't actually use Lambda or custom layers for this. But you can use Lambda
layer to echo the shape of a passing tensor.
...
def print_tensor_shape(x):
print(x.shape)
return x
model.add(Lambda(print_tensor_shape))
...
Or write a custom layer and print the shape of the tensor on call()
.
class echo_layer(Layer):
...
def call(self, x):
print(x.shape)
return x
...
model.add(echo_layer())