I have a data set made of 22 categorical variables (non-ordered). I would like to visualize their correlation in a nice heatmap. Since the Pandas built-in function
DataFrame.corr(method='pearson', min_periods=1)
only implement correlation coefficients for numerical variables (Pearson, Kendall, Spearman), I have to aggregate it myself to perform a chi-square or something like it and I am not quite sure which function use to do it in one elegant step (rather than iterating through all the cat1*cat2 pairs). To be clear, this is what I would like to end up with (a dataframe):
cat1 cat2 cat3
cat1| coef coef coef
cat2| coef coef coef
cat3| coef coef coef
Any ideas with pd.pivot_table or something in the same vein?
thanks in advance D.
You can using pd.factorize
df.apply(lambda x : pd.factorize(x)[0]).corr(method='pearson', min_periods=1)
Out[32]:
a c d
a 1.0 1.0 1.0
c 1.0 1.0 1.0
d 1.0 1.0 1.0
Data input
df=pd.DataFrame({'a':['a','b','c'],'c':['a','b','c'],'d':['a','b','c']})
Update
from scipy.stats import chisquare
df=df.apply(lambda x : pd.factorize(x)[0])+1
pd.DataFrame([chisquare(df[x].values,f_exp=df.values.T,axis=1)[0] for x in df])
Out[123]:
0 1 2 3
0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
df=pd.DataFrame({'a':['a','d','c'],'c':['a','b','c'],'d':['a','b','c'],'e':['a','b','c']})