How to ignore values when using numpy.sum and numpy.mean in matrices

Etore Marcari Jr. picture Etore Marcari Jr. · Jul 4, 2017 · Viewed 7.4k times · Source

Is there a way to avoid using specific values when applying sum and mean in numpy?

I'd like to avoid, for instance, the -999 value when calculating the result.

In [14]: c = np.matrix([[4., 2.],[4., 1.]])

In [15]: d = np.matrix([[3., 2.],[4., -999.]])

In [16]: np.sum([c, d], axis=0)
Out[16]:
array([[   7.,    4.],
       [   8., -998.]])

In [17]: np.mean([c, d], axis=0)
Out[17]:
array([[   3.5,    2. ],
       [   4. , -499. ]])

Answer

Eric picture Eric · Jul 5, 2017

Use a masked array:

>>> c = np.ma.array([[4., 2.], [4., 1.]])
>>> d = np.ma.masked_values([[3., 2.], [4., -999]], -999)

>>> np.ma.array([c, d]).sum(axis=0)
masked_array(data =
 [[7.0 4.0]
 [8.0 1.0]],
             mask =
 [[False False]
 [False False]],
       fill_value = 1e+20)

>>> np.ma.array([c, d]).mean(axis=0)
masked_array(data =
 [[3.5 2.0]
 [4.0 1.0]],
             mask =
 [[False False]
 [False False]],
       fill_value = 1e+20)