What is the difference between categorical_accuracy
and sparse_categorical_accuracy
in Keras? There is no hint in the documentation for these metrics, and by asking Dr. Google, I did not find answers for that either.
The source code can be found here:
def categorical_accuracy(y_true, y_pred):
return K.cast(K.equal(K.argmax(y_true, axis=-1),
K.argmax(y_pred, axis=-1)),
K.floatx())
def sparse_categorical_accuracy(y_true, y_pred):
return K.cast(K.equal(K.max(y_true, axis=-1),
K.cast(K.argmax(y_pred, axis=-1), K.floatx())),
K.floatx())
So in categorical_accuracy
you need to specify your target (y
) as one-hot encoded vector (e.g. in case of 3 classes, when a true class is second class, y
should be (0, 1, 0)
. In sparse_categorical_accuracy
you need should only provide an integer of the true class (in the case from previous example - it would be 1
as classes indexing is 0
-based).