I get this error :
sum() got an unexpected keyword argument 'out'
when I run this code:
import pandas as pd, numpy as np
import keras
from keras.layers.core import Dense, Activation
from keras.models import Sequential
def AUC(y_true,y_pred):
not_y_pred=np.logical_not(y_pred)
y_int1=y_true*y_pred
y_int0=np.logical_not(y_true)*not_y_pred
TP=np.sum(y_pred*y_int1)
FP=np.sum(y_pred)-TP
TN=np.sum(not_y_pred*y_int0)
FN=np.sum(not_y_pred)-TN
TPR=np.float(TP)/(TP+FN)
FPR=np.float(FP)/(FP+TN)
return((1+TPR-FPR)/2)
# Input datasets
train_df = pd.DataFrame(np.random.rand(91,1000))
train_df.iloc[:,-2]=(train_df.iloc[:,-2]>0.8)*1
model = Sequential()
model.add(Dense(output_dim=60, input_dim=91, init="glorot_uniform"))
model.add(Activation("sigmoid"))
model.add(Dense(output_dim=1, input_dim=60, init="glorot_uniform"))
model.add(Activation("sigmoid"))
model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=[AUC])
train_df.iloc[:,-1]=np.ones(train_df.shape[0]) #bias
X=train_df.iloc[:,:-1].values
Y=train_df.iloc[:,-1].values
print X.shape,Y.shape
model.fit(X, Y, batch_size=50,show_accuracy = False, verbose = 1)
Is it possible to implement a custom metric aside from doing a loop on batches and editing the source code?
Here I'm answering to OP's topic question rather than his exact problem. I'm doing this as the question shows up in the top when I google the topic problem.
You can implement a custom metric in two ways.
As mentioned in Keras docu.
import keras.backend as K
def mean_pred(y_true, y_pred):
return K.mean(y_pred)
model.compile(optimizer='sgd',
loss='binary_crossentropy',
metrics=['accuracy', mean_pred])
But here you have to remember as mentioned in Marcin Możejko's answer that y_true
and y_pred
are tensors. So in order to correctly calculate the metric you need to use keras.backend
functionality. Please look at this SO question for details How to calculate F1 Macro in Keras?
Or you can implement it in a hacky way as mentioned in Keras GH issue. For that you need to use callbacks
argument of model.fit
.
import keras as keras
import numpy as np
from keras.optimizers import SGD
from sklearn.metrics import roc_auc_score
model = keras.models.Sequential()
# ...
sgd = SGD(lr=0.001, momentum=0.9)
model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy'])
class Metrics(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self._data = []
def on_epoch_end(self, batch, logs={}):
X_val, y_val = self.validation_data[0], self.validation_data[1]
y_predict = np.asarray(model.predict(X_val))
y_val = np.argmax(y_val, axis=1)
y_predict = np.argmax(y_predict, axis=1)
self._data.append({
'val_rocauc': roc_auc_score(y_val, y_predict),
})
return
def get_data(self):
return self._data
metrics = Metrics()
history = model.fit(X_train, y_train, epochs=100, validation_data=(X_val, y_val), callbacks=[metrics])
metrics.get_data()