how to implement custom metric in keras?

Philippe C picture Philippe C · Jun 6, 2016 · Viewed 47.4k times · Source

I get this error :

sum() got an unexpected keyword argument 'out'

when I run this code:

import pandas as pd, numpy as np
import keras
from keras.layers.core import Dense, Activation
from keras.models import Sequential

def AUC(y_true,y_pred):
    not_y_pred=np.logical_not(y_pred)
    y_int1=y_true*y_pred
    y_int0=np.logical_not(y_true)*not_y_pred
    TP=np.sum(y_pred*y_int1)
    FP=np.sum(y_pred)-TP
    TN=np.sum(not_y_pred*y_int0)
    FN=np.sum(not_y_pred)-TN
    TPR=np.float(TP)/(TP+FN)
    FPR=np.float(FP)/(FP+TN)
    return((1+TPR-FPR)/2)

# Input datasets

train_df = pd.DataFrame(np.random.rand(91,1000))
train_df.iloc[:,-2]=(train_df.iloc[:,-2]>0.8)*1


model = Sequential()
model.add(Dense(output_dim=60, input_dim=91, init="glorot_uniform"))
model.add(Activation("sigmoid"))
model.add(Dense(output_dim=1, input_dim=60, init="glorot_uniform"))
model.add(Activation("sigmoid"))

model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=[AUC])


train_df.iloc[:,-1]=np.ones(train_df.shape[0]) #bias
X=train_df.iloc[:,:-1].values
Y=train_df.iloc[:,-1].values
print X.shape,Y.shape

model.fit(X, Y, batch_size=50,show_accuracy = False, verbose = 1)

Is it possible to implement a custom metric aside from doing a loop on batches and editing the source code?

Answer

vogdb picture vogdb · Jun 1, 2018

Here I'm answering to OP's topic question rather than his exact problem. I'm doing this as the question shows up in the top when I google the topic problem.

You can implement a custom metric in two ways.

  1. As mentioned in Keras docu.

    import keras.backend as K
    
    def mean_pred(y_true, y_pred):
        return K.mean(y_pred)
    
    model.compile(optimizer='sgd',
              loss='binary_crossentropy',
              metrics=['accuracy', mean_pred])
    

    But here you have to remember as mentioned in Marcin Możejko's answer that y_true and y_pred are tensors. So in order to correctly calculate the metric you need to use keras.backend functionality. Please look at this SO question for details How to calculate F1 Macro in Keras?

  2. Or you can implement it in a hacky way as mentioned in Keras GH issue. For that you need to use callbacks argument of model.fit.

    import keras as keras
    import numpy as np
    from keras.optimizers import SGD
    from sklearn.metrics import roc_auc_score
    
    model = keras.models.Sequential()
    # ...
    sgd = SGD(lr=0.001, momentum=0.9)
    model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy'])
    
    
    class Metrics(keras.callbacks.Callback):
        def on_train_begin(self, logs={}):
            self._data = []
    
        def on_epoch_end(self, batch, logs={}):
            X_val, y_val = self.validation_data[0], self.validation_data[1]
            y_predict = np.asarray(model.predict(X_val))
    
            y_val = np.argmax(y_val, axis=1)
            y_predict = np.argmax(y_predict, axis=1)
    
            self._data.append({
                'val_rocauc': roc_auc_score(y_val, y_predict),
            })
            return
    
        def get_data(self):
            return self._data
    
    metrics = Metrics()
    history = model.fit(X_train, y_train, epochs=100, validation_data=(X_val, y_val), callbacks=[metrics])
    metrics.get_data()