How compute confusion matrix for multiclass classification in Scikit?

YNr picture YNr · Apr 27, 2017 · Viewed 19.2k times · Source

I have a multiclass classification task. When I run my script based on the scikit example as the follows:

classifier = OneVsRestClassifier(GradientBoostingClassifier(n_estimators=70, max_depth=3, learning_rate=.02))

y_pred = classifier.fit(X_train, y_train).predict(X_test)
cnf_matrix = confusion_matrix(y_test, y_pred)

I get this error:

File "C:\ProgramData\Anaconda2\lib\site-packages\sklearn\metrics\classification.py", line 242, in confusion_matrix
    raise ValueError("%s is not supported" % y_type)
ValueError: multilabel-indicator is not supported

I tried to pass the labels=classifier.classes_ to confusion_matrix(), but it doesn't help.

y_test and y_pred are as the follow:

y_test =
array([[0, 0, 0, 1, 0, 0],
   [0, 0, 0, 0, 1, 0],
   [0, 1, 0, 0, 0, 0],
   ..., 
   [0, 0, 0, 0, 0, 1],
   [0, 0, 0, 1, 0, 0],
   [0, 0, 0, 0, 1, 0]])


y_pred = 
array([[0, 0, 0, 0, 0, 0],
   [0, 0, 0, 0, 0, 0],
   [0, 0, 0, 0, 0, 0],
   ..., 
   [0, 0, 0, 0, 0, 1],
   [0, 0, 0, 0, 0, 1],
   [0, 0, 0, 0, 0, 0]])

Answer

ak2205 picture ak2205 · Jan 5, 2018

This worked for me:

y_test_non_category = [ np.argmax(t) for t in y_test ]
y_predict_non_category = [ np.argmax(t) for t in y_predict ]

from sklearn.metrics import confusion_matrix
conf_mat = confusion_matrix(y_test_non_category, y_predict_non_category)

where y_test and y_predict are categorical variables like one-hot vectors.