Save classifier to disk in scikit-learn

garak picture garak · May 15, 2012 · Viewed 120.1k times · Source

How do I save a trained Naive Bayes classifier to disk and use it to predict data?

I have the following sample program from the scikit-learn website:

from sklearn import datasets
iris = datasets.load_iris()
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
y_pred = gnb.fit(iris.data, iris.target).predict(iris.data)
print "Number of mislabeled points : %d" % (iris.target != y_pred).sum()

Answer

ogrisel picture ogrisel · Jun 23, 2012

You can also use joblib.dump and joblib.load which is much more efficient at handling numerical arrays than the default python pickler.

Joblib is included in scikit-learn:

>>> import joblib
>>> from sklearn.datasets import load_digits
>>> from sklearn.linear_model import SGDClassifier

>>> digits = load_digits()
>>> clf = SGDClassifier().fit(digits.data, digits.target)
>>> clf.score(digits.data, digits.target)  # evaluate training error
0.9526989426822482

>>> filename = '/tmp/digits_classifier.joblib.pkl'
>>> _ = joblib.dump(clf, filename, compress=9)

>>> clf2 = joblib.load(filename)
>>> clf2
SGDClassifier(alpha=0.0001, class_weight=None, epsilon=0.1, eta0=0.0,
       fit_intercept=True, learning_rate='optimal', loss='hinge', n_iter=5,
       n_jobs=1, penalty='l2', power_t=0.5, rho=0.85, seed=0,
       shuffle=False, verbose=0, warm_start=False)
>>> clf2.score(digits.data, digits.target)
0.9526989426822482

Edit: in Python 3.8+ it's now possible to use pickle for efficient pickling of object with large numerical arrays as attributes if you use pickle protocol 5 (which is not the default).