Plotting learning curve in keras gives KeyError: 'val_acc'

Data Pagla picture Data Pagla · Oct 5, 2016 · Viewed 33.5k times · Source

I was trying to plot train and test learning curve in keras, however, the following code produces KeyError: 'val_acc error.

The official document <https://keras.io/callbacks/> states that in order to use 'val_acc' I need to enable validation and accuracy monitoring which I dont understand and dont know how to use in my code.

Any help would be much appreciated. Thanks.

seed = 7
np.random.seed(seed)

dataframe = pandas.read_csv("iris.csv", header=None)
dataset = dataframe.values
X = dataset[:,0:4].astype(float)
Y = dataset[:,4]

encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
dummy_y = np_utils.to_categorical(encoded_Y)

kfold = StratifiedKFold(y=Y, n_folds=10, shuffle=True, random_state=seed)
cvscores = []

for i, (train, test) in enumerate(kfold):

    model = Sequential()
    model.add(Dense(12, input_dim=4, init='uniform', activation='relu'))
    model.add(Dense(3, init='uniform', activation='sigmoid'))
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    history=model.fit(X[train], dummy_y[train], nb_epoch=200, batch_size=5, verbose=0)
    scores = model.evaluate(X[test], dummy_y[test], verbose=0)
    print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
    cvscores.append(scores[1] * 100)

print( "%.2f%% (+/- %.2f%%)" % (np.mean(cvscores), np.std(cvscores))) 


print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

Answer

driedler picture driedler · Nov 7, 2019

Looks like in Keras + Tensorflow 2.0 val_acc was renamed to val_accuracy