I would like to use cross validation to test/train my dataset and evaluate the performance of the logistic regression model on the entire dataset and not only on the test set (e.g. 25%).
These concepts are totally new to me and am not very sure if am doing it right. I would be grateful if anyone could advise me on the right steps to take where I have gone wrong. Part of my code is shown below.
Also, how can I plot ROCs for "y2" and "y3" on the same graph with the current one?
Thank you
import pandas as pd
Data=pd.read_csv ('C:\\Dataset.csv',index_col='SNo')
feature_cols=['A','B','C','D','E']
X=Data[feature_cols]
Y=Data['Status']
Y1=Data['Status1'] # predictions from elsewhere
Y2=Data['Status2'] # predictions from elsewhere
from sklearn.linear_model import LogisticRegression
logreg=LogisticRegression()
logreg.fit(X_train,y_train)
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
from sklearn import metrics, cross_validation
predicted = cross_validation.cross_val_predict(logreg, X, y, cv=10)
metrics.accuracy_score(y, predicted)
from sklearn.cross_validation import cross_val_score
accuracy = cross_val_score(logreg, X, y, cv=10,scoring='accuracy')
print (accuracy)
print (cross_val_score(logreg, X, y, cv=10,scoring='accuracy').mean())
from nltk import ConfusionMatrix
print (ConfusionMatrix(list(y), list(predicted)))
#print (ConfusionMatrix(list(y), list(yexpert)))
# sensitivity:
print (metrics.recall_score(y, predicted) )
import matplotlib.pyplot as plt
probs = logreg.predict_proba(X)[:, 1]
plt.hist(probs)
plt.show()
# use 0.5 cutoff for predicting 'default'
import numpy as np
preds = np.where(probs > 0.5, 1, 0)
print (ConfusionMatrix(list(y), list(preds)))
# check accuracy, sensitivity, specificity
print (metrics.accuracy_score(y, predicted))
#ROC CURVES and AUC
# plot ROC curve
fpr, tpr, thresholds = metrics.roc_curve(y, probs)
plt.plot(fpr, tpr)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate)')
plt.show()
# calculate AUC
print (metrics.roc_auc_score(y, probs))
# use AUC as evaluation metric for cross-validation
from sklearn.cross_validation import cross_val_score
logreg = LogisticRegression()
cross_val_score(logreg, X, y, cv=10, scoring='roc_auc').mean()
You got it almost right. cross_validation.cross_val_predict
gives you predictions for the entire dataset. You just need to remove logreg.fit
earlier in the code. Specifically, what it does is the following:
It divides your dataset in to n
folds and in each iteration it leaves one of the folds out as the test set and trains the model on the rest of the folds (n-1
folds). So, in the end you will get predictions for the entire data.
Let's illustrate this with one of the built-in datasets in sklearn, iris. This dataset contains 150 training samples with 4 features. iris['data']
is X
and iris['target']
is y
In [15]: iris['data'].shape
Out[15]: (150, 4)
To get predictions on the entire set with cross validation you can do the following:
from sklearn.linear_model import LogisticRegression
from sklearn import metrics, cross_validation
from sklearn import datasets
iris = datasets.load_iris()
predicted = cross_validation.cross_val_predict(LogisticRegression(), iris['data'], iris['target'], cv=10)
print metrics.accuracy_score(iris['target'], predicted)
Out [1] : 0.9537
print metrics.classification_report(iris['target'], predicted)
Out [2] :
precision recall f1-score support
0 1.00 1.00 1.00 50
1 0.96 0.90 0.93 50
2 0.91 0.96 0.93 50
avg / total 0.95 0.95 0.95 150
So, back to your code. All you need is this:
from sklearn import metrics, cross_validation
logreg=LogisticRegression()
predicted = cross_validation.cross_val_predict(logreg, X, y, cv=10)
print metrics.accuracy_score(y, predicted)
print metrics.classification_report(y, predicted)
For plotting ROC in multi-class classification, you can follow this tutorial which gives you something like the following:
In general, sklearn has very good tutorials and documentation. I strongly recommend reading their tutorial on cross_validation.