I'm trying to find the parameters for my SVM, which give me the best AUC. But i can't find any scoring function for AUC in sklearn. Does someone have an idea? Here is my Code:
parameters = {"C":[0.1, 1, 10, 100, 1000], "gamma":[0.1, 0.01, 0.001, 0.0001, 0.00001]}
clf = SVC(kernel = "rbf")
clf = GridSearchCV(clf, parameters, scoring = ???)
svr.fit(features_train , labels_train)
print svr.best_params_
So what can i use for ??? to get the best parameters for an high AUC score?
You can simply use:
clf = GridSearchCV(clf, parameters, scoring='roc_auc')