I have a dataframe which have three level of index, and I wish to calculate how much a value deviates from the mean. But I have different mean for different groups based on my indices. This is what I tried:
In [4]: df['count'].groupby(level=[0,1,2]).apply(lambda x: x-np.mean(x))
However, I get an error, the stack trace of which I have inserted below. I am not sure why the problem is so.
Exception Traceback (most recent call last)
<ipython-input-4-678992689ff2> in <module>()
----> 1 df['count'].groupby(level=[0,1,2]).apply(lambda x: x-np.mean(x))
C:\Users\bchandra\AppData\Local\Continuum\Anaconda2\lib\site-packages\pandas\core\groupby.pyc in apply(self, func, *args, **kwargs)
713 # ignore SettingWithCopy here in case the user mutates
714 with option_context('mode.chained_assignment',None):
--> 715 return self._python_apply_general(f)
716
717 def _python_apply_general(self, f):
C:\Users\bchandra\AppData\Local\Continuum\Anaconda2\lib\site-packages\pandas\core\groupby.pyc in _python_apply_general(self, f)
720
721 return self._wrap_applied_output(keys, values,
--> 722 not_indexed_same=mutated)
723
724 def aggregate(self, func, *args, **kwargs):
C:\Users\bchandra\AppData\Local\Continuum\Anaconda2\lib\site-packages\pandas\core\groupby.pyc in _wrap_applied_output(self, keys, values, not_indexed_same)
2520 if isinstance(values[0], (Series, dict)):
2521 return self._concat_objects(keys, values,
-> 2522 not_indexed_same=not_indexed_same)
2523 elif isinstance(values[0], DataFrame):
2524 # possible that Series -> DataFrame by applied function
C:\Users\bchandra\AppData\Local\Continuum\Anaconda2\lib\site-packages\pandas\core\groupby.pyc in _concat_objects(self, keys, values, not_indexed_same)
1258
1259 if isinstance(result, Series):
-> 1260 result = result.reindex(ax)
1261 else:
1262 result = result.reindex_axis(ax, axis=self.axis)
C:\Users\bchandra\AppData\Local\Continuum\Anaconda2\lib\site-packages\pandas\core\series.pyc in reindex(self, index, **kwargs)
2266 @Appender(generic._shared_docs['reindex'] % _shared_doc_kwargs)
2267 def reindex(self, index=None, **kwargs):
-> 2268 return super(Series, self).reindex(index=index, **kwargs)
2269
2270 @Appender(generic._shared_docs['fillna'] % _shared_doc_kwargs)
C:\Users\bchandra\AppData\Local\Continuum\Anaconda2\lib\site-packages\pandas\core\generic.pyc in reindex(self, *args, **kwargs)
1960 # perform the reindex on the axes
1961 return self._reindex_axes(axes, level, limit, tolerance,
-> 1962 method, fill_value, copy).__finalize__(self)
1963
1964 def _reindex_axes(self, axes, level, limit, tolerance, method,
C:\Users\bchandra\AppData\Local\Continuum\Anaconda2\lib\site-packages\pandas\core\generic.pyc in _reindex_axes(self, axes, level, limit, tolerance, method, fil
l_value, copy)
1974 new_index, indexer = ax.reindex(
1975 labels, level=level, limit=limit, tolerance=tolerance,
-> 1976 method=method)
1977
1978 axis = self._get_axis_number(a)
C:\Users\bchandra\AppData\Local\Continuum\Anaconda2\lib\site-packages\pandas\core\index.pyc in reindex(self, target, method, level, limit, tolerance)
5280 else:
5281 raise Exception(
-> 5282 "cannot handle a non-unique multi-index!")
5283
5284 if not isinstance(target, MultiIndex):
Exception: cannot handle a non-unique multi-index!
My data frame looks something like this:
Count
Cat SubCat
1 2 7
1 2 5
1 3 4
1 3 3
4 5 2
4 5 1
4 7 0
4 7 -1
For simplicity sake, say my index is 2 levels instead of 3. What I want to do is group by (cat,Sub) which means (category,subcategory).
Then find the mean of all group which will be 7+5/2=6 here in the first case where I have grouped by cat=1, sub=2. Then I would like to find 7-6 and 5-6 respectively.
so something like df.groupby(level=[0,1]).apply(lambda x: x-np.mean(x))
Some dummy code that shows error on my pc (Pandas version 0.17.1) :
index=[]
[index.append(x) for y in range(25) for x in np.arange(2)]
subindex=[]
[subindex.append(10*x) for y in range(25) for x in np.arange(2)]
sample=pd.DataFrame({'count':np.arange(2*25),'cat':index,'sub':subindex,'date':np.random.randint(2*25)})
sample.set_index(['cat','sub'],inplace=True)
sample['count'].groupby(level=[0,1]).apply(lambda x: x-np.mean(x))
I had the same error once while aggregating the data. Having many columns, I didn't notice that some of them were duplicated columns. Before grouping by, check all your column names or use a function to drop duplicates in your hierarchical index.