I need to count unique ID
values in every domain
I have data
ID, domain
123, 'vk.com'
123, 'vk.com'
123, 'twitter.com'
456, 'vk.com'
456, 'facebook.com'
456, 'vk.com'
456, 'google.com'
789, 'twitter.com'
789, 'vk.com'
I try df.groupby(['domain', 'ID']).count()
But I want to get
domain, count
vk.com 3
twitter.com 2
facebook.com 1
google.com 1
You need nunique
:
df = df.groupby('domain')['ID'].nunique()
print (df)
domain
'facebook.com' 1
'google.com' 1
'twitter.com' 2
'vk.com' 3
Name: ID, dtype: int64
If you need to strip
'
characters:
df = df.ID.groupby([df.domain.str.strip("'")]).nunique()
print (df)
domain
facebook.com 1
google.com 1
twitter.com 2
vk.com 3
Name: ID, dtype: int64
Or as Jon Clements commented:
df.groupby(df.domain.str.strip("'"))['ID'].nunique()
You can retain the column name like this:
df = df.groupby(by='domain', as_index=False).agg({'ID': pd.Series.nunique})
print(df)
domain ID
0 fb 1
1 ggl 1
2 twitter 2
3 vk 3
The difference is that nunique()
returns a Series and agg()
returns a DataFrame.