I am trying to re-arrange a DataFrame that I automatically read in from a json using Pandas. I've searched but have had no success.
I have the following json (saved as a string for copy/paste convenience) with a bunch of json objects/dictionarys under the tag 'value'
json_str = '''{"preferred_timestamp": "internal_timestamp",
"internal_timestamp": 3606765503.684,
"stream_name": "ctdpf_j_cspp_instrument",
"values": [{
"value_id": "temperature",
"value": 9.8319
}, {
"value_id": "conductivity",
"value": 3.58847
}, {
"value_id": "pressure",
"value": 22.963
}]
}'''
I use the function 'json_normalize' in order to load the json into a flattened Pandas dataframe.
>>> from pandas.io.json import json_normalize
>>> import simplejson as json
>>> df = json_normalize(json.loads(json_str), 'values', ['preferred_timestamp', 'stream_name', 'internal_timestamp'])
>>> df
value value_id preferred_timestamp internal_timestamp \
0 9.83190 temperature internal_timestamp 3.606766e+09
1 3.58847 conductivity internal_timestamp 3.606766e+09
2 22.96300 pressure internal_timestamp 3.606766e+09
3 32.89470 salinity internal_timestamp 3.606766e+09
stream_name
0 ctdpf_j_cspp_instrument
1 ctdpf_j_cspp_instrument
2 ctdpf_j_cspp_instrument
3 ctdpf_j_cspp_instrument
Here is where I am stuck. I want to take the value and value_id columns and pivot these into new columns based off of value_id.
I want the dataframe to look like the following:
stream_name preferred_timestamp internal_timestamp conductivity pressure salinity temperature
ctdpf_j_cspp_instrument internal_timestamp 3.606766e+09 3.58847 22.96300 32.89470 9.83190
I've tried both the pivot and pivot_table Pandas functions and even tried to manually pivot the tables by using 'set_index' and 'stack' but it's not quite how I want it.
>>> df.pivot_table(values='value', index=['stream_name', 'preferred_timestamp', 'internal_timestamp', 'value_id'])
stream_name preferred_timestamp internal_timestamp value_id
ctdpf_j_cspp_instrument internal_timestamp 3.606766e+09 conductivity 3.58847
pressure 22.96300
salinity 32.89470
temperature 9.83190
Name: value, dtype: float64
This is close, but it didn't seem to pivot the values in 'value_id' into separate columns.
and
>>> df.pivot('stream_name', 'value_id', 'value')
value_id conductivity pressure salinity temperature
stream_name
ctdpf_j_cspp_instrument 3.58847 22.963 32.8947 9.8319
Close again, but it lacks the other columns that I want to be associated with this line.
I'm stuck here. Is there an elegant way of doing this or should I split the DataFrames and re-merge them to how I want?
Your first attempt was nearly correct, just use columns='value_id'
instead of including it in the index.
# Perform the pivot.
df = df.pivot_table(
values='value',
index=['stream_name', 'preferred_timestamp', 'internal_timestamp'],
columns='value_id'
)
# Formatting.
df.reset_index(inplace=True)
df.columns.name = None
This isn't an issue in your example data, but keep in mind that pivot_table
will aggregate values if multiple values are pivoted to the same position (taking the mean by default).