Pandas Pivot tables row subtotals

balsagoth picture balsagoth · Mar 22, 2013 · Viewed 57.7k times · Source

I'm using Pandas 0.10.1

Considering this Dataframe:

Date       State   City    SalesToday  SalesMTD  SalesYTD
20130320     stA    ctA            20       400      1000
20130320     stA    ctB            30       500      1100
20130320     stB    ctC            10       500       900
20130320     stB    ctD            40       200      1300
20130320     stC    ctF            30       300       800

How can i group subtotals per state?

State   City  SalesToday  SalesMTD  SalesYTD
  stA    ALL          50       900      2100
  stA    ctA          20       400      1000
  stA    ctB          30       500      1100

I tried with a pivot table but i only can have subtotals in columns

table = pivot_table(df, values=['SalesToday', 'SalesMTD','SalesYTD'],\
                     rows=['State','City'], aggfunc=np.sum, margins=True)

I can achieve this on excel, with a pivot table.

Answer

Wes McKinney picture Wes McKinney · Mar 22, 2013

If you put State and City not both in the rows, you'll get separate margins. Reshape and you get the table you're after:

In [10]: table = pivot_table(df, values=['SalesToday', 'SalesMTD','SalesYTD'],\
                     rows=['State'], cols=['City'], aggfunc=np.sum, margins=True)


In [11]: table.stack('City')
Out[11]: 
            SalesMTD  SalesToday  SalesYTD
State City                                
stA   All        900          50      2100
      ctA        400          20      1000
      ctB        500          30      1100
stB   All        700          50      2200
      ctC        500          10       900
      ctD        200          40      1300
stC   All        300          30       800
      ctF        300          30       800
All   All       1900         130      5100
      ctA        400          20      1000
      ctB        500          30      1100
      ctC        500          10       900
      ctD        200          40      1300
      ctF        300          30       800

I admit this isn't totally obvious.