Recursive feature elimination on Random Forest using scikit-learn

Bryan picture Bryan · Jun 9, 2014 · Viewed 18.2k times · Source

I'm trying to preform recursive feature elimination using scikit-learn and a random forest classifier, with OOB ROC as the method of scoring each subset created during the recursive process.

However, when I try to use the RFECV method, I get an error saying AttributeError: 'RandomForestClassifier' object has no attribute 'coef_'

Random Forests don't have coefficients per se, but they do have rankings by Gini score. So, I'm wondering how to get arround this problem.

Please note that I want to use a method that will explicitly tell me what features from my pandas DataFrame were selected in the optimal grouping as I am using recursive feature selection to try to minimize the amount of data I will input into the final classifier.

Here's some example code:

from sklearn import datasets
import pandas as pd
from pandas import Series
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFECV

iris = datasets.load_iris()
x=pd.DataFrame(iris.data, columns=['var1','var2','var3', 'var4'])
y=pd.Series(iris.target, name='target')
rf = RandomForestClassifier(n_estimators=500, min_samples_leaf=5, n_jobs=-1)
rfecv = RFECV(estimator=rf, step=1, cv=10, scoring='ROC', verbose=2)
selector=rfecv.fit(x, y)

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/feature_selection/rfe.py", line 336, in fit
    ranking_ = rfe.fit(X_train, y_train).ranking_
  File "/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/feature_selection/rfe.py", line 148, in fit
    if estimator.coef_.ndim > 1:
AttributeError: 'RandomForestClassifier' object has no attribute 'coef_'

Answer

A.P. picture A.P. · Aug 22, 2014

Here's what I've done to adapt RandomForestClassifier to work with RFECV:

class RandomForestClassifierWithCoef(RandomForestClassifier):
    def fit(self, *args, **kwargs):
        super(RandomForestClassifierWithCoef, self).fit(*args, **kwargs)
        self.coef_ = self.feature_importances_

Just using this class does the trick if you use 'accuracy' or 'f1' score. For 'roc_auc', RFECV complains that multiclass format is not supported. Changing it to two-class classification with the code below, the 'roc_auc' scoring works. (Using Python 3.4.1 and scikit-learn 0.15.1)

y=(pd.Series(iris.target, name='target')==2).astype(int)

Plugging into your code:

from sklearn import datasets
import pandas as pd
from pandas import Series
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFECV

class RandomForestClassifierWithCoef(RandomForestClassifier):
    def fit(self, *args, **kwargs):
        super(RandomForestClassifierWithCoef, self).fit(*args, **kwargs)
        self.coef_ = self.feature_importances_

iris = datasets.load_iris()
x=pd.DataFrame(iris.data, columns=['var1','var2','var3', 'var4'])
y=(pd.Series(iris.target, name='target')==2).astype(int)
rf = RandomForestClassifierWithCoef(n_estimators=500, min_samples_leaf=5, n_jobs=-1)
rfecv = RFECV(estimator=rf, step=1, cv=2, scoring='roc_auc', verbose=2)
selector=rfecv.fit(x, y)