I'm reading in a csv file with multiple datetime columns. I'd need to set the data types upon reading in the file, but datetimes appear to be a problem. For instance:
headers = ['col1', 'col2', 'col3', 'col4']
dtypes = ['datetime', 'datetime', 'str', 'float']
pd.read_csv(file, sep='\t', header=None, names=headers, dtype=dtypes)
When run gives a error:
TypeError: data type "datetime" not understood
Converting columns after the fact, via pandas.to_datetime() isn't an option I can't know which columns will be datetime objects. That information can change and comes from whatever informs my dtypes list.
Alternatively, I've tried to load the csv file with numpy.genfromtxt, set the dtypes in that function, and then convert to a pandas.dataframe but it garbles the data. Any help is greatly appreciated!
There is no datetime dtype to be set for read_csv as csv files can only contain strings, integers and floats.
Setting a dtype to datetime will make pandas interpret the datetime as an object, meaning you will end up with a string.
The pandas.read_csv()
function has a keyword argument called parse_dates
Using this you can on the fly convert strings, floats or integers into datetimes using the default date_parser
(dateutil.parser.parser
)
headers = ['col1', 'col2', 'col3', 'col4']
dtypes = {'col1': 'str', 'col2': 'str', 'col3': 'str', 'col4': 'float'}
parse_dates = ['col1', 'col2']
pd.read_csv(file, sep='\t', header=None, names=headers, dtype=dtypes, parse_dates=parse_dates)
This will cause pandas to read col1
and col2
as strings, which they most likely are ("2016-05-05" etc.) and after having read the string, the date_parser for each column will act upon that string and give back whatever that function returns.
The pandas.read_csv()
function also has a keyword argument called date_parser
Setting this to a lambda function will make that particular function be used for the parsing of the dates.
You have to give it the function, not the execution of the function, thus this is Correct
date_parser = pd.datetools.to_datetime
This is incorrect:
date_parser = pd.datetools.to_datetime()
pd.datetools.to_datetime
has been relocated to date_parser = pd.to_datetime
Thanks @stackoverYC