Keep only date part when using pandas.to_datetime

user1642513 picture user1642513 · Apr 23, 2013 · Viewed 382.5k times · Source

I use pandas.to_datetime to parse the dates in my data. Pandas by default represents the dates with datetime64[ns] even though the dates are all daily only. I wonder whether there is an elegant/clever way to convert the dates to datetime.date or datetime64[D] so that, when I write the data to CSV, the dates are not appended with 00:00:00. I know I can convert the type manually element-by-element:

[dt.to_datetime().date() for dt in df.dates]

But this is really slow since I have many rows and it sort of defeats the purpose of using pandas.to_datetime. Is there a way to convert the dtype of the entire column at once? Or alternatively, does pandas.to_datetime support a precision specification so that I can get rid of the time part while working with daily data?

Answer

EdChum picture EdChum · Dec 14, 2015

Since version 0.15.0 this can now be easily done using .dt to access just the date component:

df['just_date'] = df['dates'].dt.date

The above returns a datetime.date dtype, if you want to have a datetime64 then you can just normalize the time component to midnight so it sets all the values to 00:00:00:

df['normalised_date'] = df['dates'].dt.normalize()

This keeps the dtype as datetime64, but the display shows just the date value.