Python is supposed to have "arbitrary precision integers," according to the answer in Python integer ranges. But this result is plainly not arbitrary precision:
$ python -c 'print("%d" % (999999999999999999999999/3))'
333333333333333327740928
According to PEP 237, bignum
is arbitrarily large (not just the size of C's long
type). And Wikipedia says Python's bignum
is arbitrary precision.
So why the incorrect result from the above line of code?
Actually in python3 whenever you divide ints you get float as a result. There is a //
operator that does integer division:
>>> 999999999999999999999999/3
3.333333333333333e+23
>>> 999999999999999999999999//3
333333333333333333333333
>>> type(999999999999999999999999/3)
<class 'float'>
>>> type(999999999999999999999999//3)
<class 'int'>
This does give the correct arbitrary precision output:
python -c 'print("%d" % (999999999999999999999999//3))'
333333333333333333333333
This is actually simple, just add:
>>> from __future__ import division
this will enable 3.X division in 2.2+ code.
>>> from sys import version
>>> version
'2.7.6 (default, Dec 30 2013, 14:37:40) \n[GCC 4.8.2]'
>>> from __future__ import division
>>> type(999999999999999999999999//3)
<type 'long'>
>>> type(999999999999999999999999/3)
<type 'float'>