Find minimum distance from point to complicated curve

Gabriel picture Gabriel · Sep 30, 2013 · Viewed 8.5k times · Source

I have a complicated curve defined as a set of points in a table like so (the full table is here):

#  x   y
1.0577  12.0914
1.0501  11.9946
1.0465  11.9338
...

If I plot this table with the commands:

plt.plot(x_data, y_data, c='b',lw=1.)
plt.scatter(x_data, y_data, marker='o', color='k', s=10, lw=0.2)

I get the following:

enter image description here

where I've added the red points and segments manually. What I need is a way to calculate those segments for each of those points, that is: a way to find the minimum distance from a given point in this 2D space to the interpolated curve.

I can't use the distance to the data points themselves (the black dots that generate the blue curve) since they are not located at equal intervals, sometimes they are close and sometimes they are far apart and this deeply affects my results further down the line.

Since this is not a well behaved curve I'm not really sure what I could do. I've tried interpolating it with a UnivariateSpline but it returns a very poor fit:

# Sort data according to x.
temp_data = zip(x_data, y_data)
temp_data.sort()
# Unpack sorted data.
x_sorted, y_sorted = zip(*temp_data)

# Generate univariate spline.
s = UnivariateSpline(x_sorted, y_sorted, k=5)
xspl = np.linspace(0.8, 1.1, 100)
yspl = s(xspl)

# Plot.
plt.scatter(xspl, yspl, marker='o', color='r', s=10, lw=0.2)

enter image description here

I also tried increasing the number of interpolating points but got a mess:

# Sort data according to x.
temp_data = zip(x_data, y_data)
temp_data.sort()
# Unpack sorted data.
x_sorted, y_sorted = zip(*temp_data)

t = np.linspace(0, 1, len(x_sorted))
t2 = np.linspace(0, 1, 100)    
# One-dimensional linear interpolation.
x2 = np.interp(t2, t, x_sorted)
y2 = np.interp(t2, t, y_sorted)
plt.scatter(x2, y2, marker='o', color='r', s=10, lw=0.2)

enter image description here

Any ideas/pointers will be greatly appreciated.

Answer

Joe Kington picture Joe Kington · Nov 8, 2013

If you're open to using a library for this, have a look at shapely: https://github.com/Toblerity/Shapely

As a quick example (points.txt contains the data you linked to in your question):

import shapely.geometry as geom
import numpy as np

coords = np.loadtxt('points.txt')

line = geom.LineString(coords)
point = geom.Point(0.8, 10.5)

# Note that "line.distance(point)" would be identical
print point.distance(line)

As an interactive example (this also draws the line segments you wanted):

import numpy as np
import shapely.geometry as geom
import matplotlib.pyplot as plt

class NearestPoint(object):
    def __init__(self, line, ax):
        self.line = line
        self.ax = ax
        ax.figure.canvas.mpl_connect('button_press_event', self)

    def __call__(self, event):
        x, y = event.xdata, event.ydata
        point = geom.Point(x, y)
        distance = self.line.distance(point)
        self.draw_segment(point)
        print 'Distance to line:', distance

    def draw_segment(self, point):
        point_on_line = line.interpolate(line.project(point))
        self.ax.plot([point.x, point_on_line.x], [point.y, point_on_line.y], 
                     color='red', marker='o', scalex=False, scaley=False)
        fig.canvas.draw()

if __name__ == '__main__':
    coords = np.loadtxt('points.txt')

    line = geom.LineString(coords)

    fig, ax = plt.subplots()
    ax.plot(*coords.T)
    ax.axis('equal')
    NearestPoint(line, ax)
    plt.show()

enter image description here

Note that I've added ax.axis('equal'). shapely operates in the coordinate system that the data is in. Without the equal axis plot, the view will be distorted, and while shapely will still find the nearest point, it won't look quite right in the display:

enter image description here