Fastest way to compute entropy in Python

blueSurfer picture blueSurfer · Mar 16, 2013 · Viewed 138k times · Source

In my project I need to compute the entropy of 0-1 vectors many times. Here's my code:

def entropy(labels):
    """ Computes entropy of 0-1 vector. """
    n_labels = len(labels)

    if n_labels <= 1:
        return 0

    counts = np.bincount(labels)
    probs = counts[np.nonzero(counts)] / n_labels
    n_classes = len(probs)

    if n_classes <= 1:
        return 0
    return - np.sum(probs * np.log(probs)) / np.log(n_classes)

Is there a faster way?

Answer

Jarad picture Jarad · Jul 14, 2017

@Sanjeet Gupta answer is good but could be condensed. This question is specifically asking about the "Fastest" way but I only see times on one answer so I'll post a comparison of using scipy and numpy to the original poster's entropy2 answer with slight alterations.

Four different approaches: scipy/numpy, numpy/math, pandas/numpy, numpy

import numpy as np
from scipy.stats import entropy
from math import log, e
import pandas as pd

import timeit

def entropy1(labels, base=None):
  value,counts = np.unique(labels, return_counts=True)
  return entropy(counts, base=base)

def entropy2(labels, base=None):
  """ Computes entropy of label distribution. """

  n_labels = len(labels)

  if n_labels <= 1:
    return 0

  value,counts = np.unique(labels, return_counts=True)
  probs = counts / n_labels
  n_classes = np.count_nonzero(probs)

  if n_classes <= 1:
    return 0

  ent = 0.

  # Compute entropy
  base = e if base is None else base
  for i in probs:
    ent -= i * log(i, base)

  return ent

def entropy3(labels, base=None):
  vc = pd.Series(labels).value_counts(normalize=True, sort=False)
  base = e if base is None else base
  return -(vc * np.log(vc)/np.log(base)).sum()

def entropy4(labels, base=None):
  value,counts = np.unique(labels, return_counts=True)
  norm_counts = counts / counts.sum()
  base = e if base is None else base
  return -(norm_counts * np.log(norm_counts)/np.log(base)).sum()

Timeit operations:

repeat_number = 1000000

a = timeit.repeat(stmt='''entropy1(labels)''',
                  setup='''labels=[1,3,5,2,3,5,3,2,1,3,4,5];from __main__ import entropy1''',
                  repeat=3, number=repeat_number)

b = timeit.repeat(stmt='''entropy2(labels)''',
                  setup='''labels=[1,3,5,2,3,5,3,2,1,3,4,5];from __main__ import entropy2''',
                  repeat=3, number=repeat_number)

c = timeit.repeat(stmt='''entropy3(labels)''',
                  setup='''labels=[1,3,5,2,3,5,3,2,1,3,4,5];from __main__ import entropy3''',
                  repeat=3, number=repeat_number)

d = timeit.repeat(stmt='''entropy4(labels)''',
                  setup='''labels=[1,3,5,2,3,5,3,2,1,3,4,5];from __main__ import entropy4''',
                  repeat=3, number=repeat_number)

Timeit results:

# for loop to print out results of timeit
for approach,timeit_results in zip(['scipy/numpy', 'numpy/math', 'pandas/numpy', 'numpy'], [a,b,c,d]):
  print('Method: {}, Avg.: {:.6f}'.format(approach, np.array(timeit_results).mean()))

Method: scipy/numpy, Avg.: 63.315312
Method: numpy/math, Avg.: 49.256894
Method: pandas/numpy, Avg.: 884.644023
Method: numpy, Avg.: 60.026938

Winner: numpy/math (entropy2)

It's also worth noting that the entropy2 function above can handle numeric AND text data. ex: entropy2(list('abcdefabacdebcab')). The original poster's answer is from 2013 and had a specific use-case for binning ints but it won't work for text.