I have a data frame with three string columns. I know that the only one value in the 3rd column is valid for every combination of the first two. To clean the data I have to group by data frame by first two columns and select most common value of the third column for each combination.
My code:
import pandas as pd
from scipy import stats
source = pd.DataFrame({'Country' : ['USA', 'USA', 'Russia','USA'],
'City' : ['New-York', 'New-York', 'Sankt-Petersburg', 'New-York'],
'Short name' : ['NY','New','Spb','NY']})
print source.groupby(['Country','City']).agg(lambda x: stats.mode(x['Short name'])[0])
Last line of code doesn't work, it says "Key error 'Short name'" and if I try to group only by City, then I got an AssertionError. What can I do fix it?
You can use value_counts()
to get a count series, and get the first row:
import pandas as pd
source = pd.DataFrame({'Country' : ['USA', 'USA', 'Russia','USA'],
'City' : ['New-York', 'New-York', 'Sankt-Petersburg', 'New-York'],
'Short name' : ['NY','New','Spb','NY']})
source.groupby(['Country','City']).agg(lambda x:x.value_counts().index[0])
In case you are wondering about performing other agg functions in the .agg() try this.
# Let's add a new col, account
source['account'] = [1,2,3,3]
source.groupby(['Country','City']).agg(mod = ('Short name', \
lambda x: x.value_counts().index[0]),
avg = ('account', 'mean') \
)