I would like to extract chains from pdb files. I have a file named pdb.txt which contains pdb IDs as shown below. The first four characters represent PDB IDs and last character is the chain IDs.
1B68A
1BZ4B
4FUTA
I would like to 1) read the file line by line
2) download the atomic coordinates of each chain from the corresponding PDB files.
3) save the output to a folder.
I used the following script to extract chains. But this code prints only A chains from pdb files.
for i in 1B68 1BZ4 4FUT
do
wget -c "http://www.pdb.org/pdb/download/downloadFile.do?fileFormat=pdb&compression=NO&structureId="$i -O $i.pdb
grep ATOM $i.pdb | grep 'A' > $i\_A.pdb
done
The following BioPython code should suit your needs well.
It uses PDB.Select
to only select the desired chains (in your case, one chain) and PDBIO()
to create a structure containing just the chain.
import os
from Bio import PDB
class ChainSplitter:
def __init__(self, out_dir=None):
""" Create parsing and writing objects, specify output directory. """
self.parser = PDB.PDBParser()
self.writer = PDB.PDBIO()
if out_dir is None:
out_dir = os.path.join(os.getcwd(), "chain_PDBs")
self.out_dir = out_dir
def make_pdb(self, pdb_path, chain_letters, overwrite=False, struct=None):
""" Create a new PDB file containing only the specified chains.
Returns the path to the created file.
:param pdb_path: full path to the crystal structure
:param chain_letters: iterable of chain characters (case insensitive)
:param overwrite: write over the output file if it exists
"""
chain_letters = [chain.upper() for chain in chain_letters]
# Input/output files
(pdb_dir, pdb_fn) = os.path.split(pdb_path)
pdb_id = pdb_fn[3:7]
out_name = "pdb%s_%s.ent" % (pdb_id, "".join(chain_letters))
out_path = os.path.join(self.out_dir, out_name)
print "OUT PATH:",out_path
plural = "s" if (len(chain_letters) > 1) else "" # for printing
# Skip PDB generation if the file already exists
if (not overwrite) and (os.path.isfile(out_path)):
print("Chain%s %s of '%s' already extracted to '%s'." %
(plural, ", ".join(chain_letters), pdb_id, out_name))
return out_path
print("Extracting chain%s %s from %s..." % (plural,
", ".join(chain_letters), pdb_fn))
# Get structure, write new file with only given chains
if struct is None:
struct = self.parser.get_structure(pdb_id, pdb_path)
self.writer.set_structure(struct)
self.writer.save(out_path, select=SelectChains(chain_letters))
return out_path
class SelectChains(PDB.Select):
""" Only accept the specified chains when saving. """
def __init__(self, chain_letters):
self.chain_letters = chain_letters
def accept_chain(self, chain):
return (chain.get_id() in self.chain_letters)
if __name__ == "__main__":
""" Parses PDB id's desired chains, and creates new PDB structures. """
import sys
if not len(sys.argv) == 2:
print "Usage: $ python %s 'pdb.txt'" % __file__
sys.exit()
pdb_textfn = sys.argv[1]
pdbList = PDB.PDBList()
splitter = ChainSplitter("/home/steve/chain_pdbs") # Change me.
with open(pdb_textfn) as pdb_textfile:
for line in pdb_textfile:
pdb_id = line[:4].lower()
chain = line[4]
pdb_fn = pdbList.retrieve_pdb_file(pdb_id)
splitter.make_pdb(pdb_fn, chain)
One final note: don't write your own parser for PDB files. The format specification is ugly (really ugly), and the amount of faulty PDB files out there is staggering. Use a tool like BioPython that will handle parsing for you!
Furthermore, instead of using wget
, you should use tools that interact with the PDB database for you. They take FTP connection limitations into account, the changing nature of the PDB database, and more. I should know - I updated Bio.PDBList
to account for changes in the database. =)