Python: Calculate Voronoi Tesselation from Scipy's Delaunay Triangulation in 3D

EdwardAndo picture EdwardAndo · May 18, 2012 · Viewed 17.7k times · Source

I have about 50,000 data points in 3D on which I have run scipy.spatial.Delaunay from the new scipy (I'm using 0.10) which gives me a very useful triangulation.

Based on: http://en.wikipedia.org/wiki/Delaunay_triangulation (section "Relationship with the Voronoi diagram")

...I was wondering if there is an easy way to get to the "dual graph" of this triangulation, which is the Voronoi Tesselation.

Any clues? My searching around on this seems to show no pre-built in scipy functions, which I find almost strange!

Thanks, Edward

Answer

pv. picture pv. · May 18, 2012

The adjacency information can be found in the neighbors attribute of the Delaunay object. Unfortunately, the code does not expose the circumcenters to the user at the moment, so you'll have to recompute those yourself.

Also, the Voronoi edges that extend to infinity are not directly obtained in this way. It's still probably possible, but needs some more thinking.

import numpy as np
from scipy.spatial import Delaunay

points = np.random.rand(30, 2)
tri = Delaunay(points)

p = tri.points[tri.vertices]

# Triangle vertices
A = p[:,0,:].T
B = p[:,1,:].T
C = p[:,2,:].T

# See http://en.wikipedia.org/wiki/Circumscribed_circle#Circumscribed_circles_of_triangles
# The following is just a direct transcription of the formula there
a = A - C
b = B - C

def dot2(u, v):
    return u[0]*v[0] + u[1]*v[1]

def cross2(u, v, w):
    """u x (v x w)"""
    return dot2(u, w)*v - dot2(u, v)*w

def ncross2(u, v):
    """|| u x v ||^2"""
    return sq2(u)*sq2(v) - dot2(u, v)**2

def sq2(u):
    return dot2(u, u)

cc = cross2(sq2(a) * b - sq2(b) * a, a, b) / (2*ncross2(a, b)) + C

# Grab the Voronoi edges
vc = cc[:,tri.neighbors]
vc[:,tri.neighbors == -1] = np.nan # edges at infinity, plotting those would need more work...

lines = []
lines.extend(zip(cc.T, vc[:,:,0].T))
lines.extend(zip(cc.T, vc[:,:,1].T))
lines.extend(zip(cc.T, vc[:,:,2].T))

# Plot it
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection

lines = LineCollection(lines, edgecolor='k')

plt.hold(1)
plt.plot(points[:,0], points[:,1], '.')
plt.plot(cc[0], cc[1], '*')
plt.gca().add_collection(lines)
plt.axis('equal')
plt.xlim(-0.1, 1.1)
plt.ylim(-0.1, 1.1)
plt.show()