When I use this it does not give any error
out_layer = tf.add(tf.matmul(layer_4 , weights['out']) , biases['out'])
out_layer = tf.nn.softmax(out_layer)
But when I use this
model=Sequential()
model.add(Dense(100, input_dim= n_dim,
activation='tanh',kernel_initializer='uniform'))
keras.layers.core.Dropout(0.3, noise_shape=None, seed=None)
model.add(Dense(50,input_dim=1000,activation='sigmoid'))
keras.layers.core.Dropout(0.4, noise_shape=None, seed=None)
model.add(Dense(15,input_dim=500,activation='sigmoid'))
keras.layers.core.Dropout(0.2, noise_shape=None, seed=None)
model.add(Dense(units=n_class))
model.add(Activation('softmax'))
I get error as
TypeError: softmax() got an unexpected keyword argument 'axis'
What should I do? I am using python2 Thanks
Try this:
import tensorflow as tf
Then add a softmax layer in this way:
model.add(Activation(tf.nn.softmax))