I have df
:
df = pd.DataFrame({'a':[7,8,9],
'b':[1,3,5],
'c':[5,3,6]})
print (df)
a b c
0 7 1 5
1 8 3 3
2 9 5 6
Then rename first value by this:
df.columns.values[0] = 'f'
All seems very nice:
print (df)
f b c
0 7 1 5
1 8 3 3
2 9 5 6
print (df.columns)
Index(['f', 'b', 'c'], dtype='object')
print (df.columns.values)
['f' 'b' 'c']
If select b
it works nice:
print (df['b'])
0 1
1 3
2 5
Name: b, dtype: int64
But if select a
it return column f
:
print (df['a'])
0 7
1 8
2 9
Name: f, dtype: int64
And if select f
get keyerror.
print (df['f'])
#KeyError: 'f'
print (df.info())
#KeyError: 'f'
What is problem? Can somebody explain it? Or bug?
You aren't expected to alter the values
attribute.
Try df.columns.values = ['a', 'b', 'c']
and you get:
--------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-61-e7e440adc404> in <module>() ----> 1 df.columns.values = ['a', 'b', 'c'] AttributeError: can't set attribute
That's because pandas
detects that you are trying to set the attribute and stops you.
However, it can't stop you from changing the underlying values
object itself.
When you use rename
, pandas
follows up with a bunch of clean up stuff. I've pasted the source below.
Ultimately what you've done is altered the values without initiating the clean up. You can initiate it yourself with a followup call to _data.rename_axis
(example can be seen in source below). This will force the clean up to be run and then you can access ['f']
df._data = df._data.rename_axis(lambda x: x, 0, True)
df['f']
0 7
1 8
2 9
Name: f, dtype: int64
Moral of the story: probably not a great idea to rename a column this way.
but this story gets weirder
This is fine
df = pd.DataFrame({'a':[7,8,9],
'b':[1,3,5],
'c':[5,3,6]})
df.columns.values[0] = 'f'
df['f']
0 7
1 8
2 9
Name: f, dtype: int64
This is not fine
df = pd.DataFrame({'a':[7,8,9],
'b':[1,3,5],
'c':[5,3,6]})
print(df)
df.columns.values[0] = 'f'
df['f']
KeyError:
Turns out, we can modify the values
attribute prior to displaying df
and it will apparently run all the initialization upon the first display
. If you display it prior to changing the values
attribute, it will error out.
weirder still
df = pd.DataFrame({'a':[7,8,9],
'b':[1,3,5],
'c':[5,3,6]})
print(df)
df.columns.values[0] = 'f'
df['f'] = 1
df['f']
f f
0 7 1
1 8 1
2 9 1
As if we didn't already know that this was a bad idea...
source for rename
def rename(self, *args, **kwargs):
axes, kwargs = self._construct_axes_from_arguments(args, kwargs)
copy = kwargs.pop('copy', True)
inplace = kwargs.pop('inplace', False)
if kwargs:
raise TypeError('rename() got an unexpected keyword '
'argument "{0}"'.format(list(kwargs.keys())[0]))
if com._count_not_none(*axes.values()) == 0:
raise TypeError('must pass an index to rename')
# renamer function if passed a dict
def _get_rename_function(mapper):
if isinstance(mapper, (dict, ABCSeries)):
def f(x):
if x in mapper:
return mapper[x]
else:
return x
else:
f = mapper
return f
self._consolidate_inplace()
result = self if inplace else self.copy(deep=copy)
# start in the axis order to eliminate too many copies
for axis in lrange(self._AXIS_LEN):
v = axes.get(self._AXIS_NAMES[axis])
if v is None:
continue
f = _get_rename_function(v)
baxis = self._get_block_manager_axis(axis)
result._data = result._data.rename_axis(f, axis=baxis, copy=copy)
result._clear_item_cache()
if inplace:
self._update_inplace(result._data)
else:
return result.__finalize__(self)