pandas dataframe convert column type to string or categorical

jklaus picture jklaus · Aug 23, 2016 · Viewed 129.2k times · Source

How do I convert a single column of a pandas dataframe to type string? In the df of housing data below I need to convert zipcode to string so that when I run linear regression, zipcode is treated as categorical and not numeric. Thanks!

df = pd.DataFrame({'zipcode': {17384: 98125, 2680: 98107, 722: 98005, 18754: 98109, 14554: 98155}, 'bathrooms': {17384: 1.5, 2680: 0.75, 722: 3.25, 18754: 1.0, 14554: 2.5}, 'sqft_lot': {17384: 1650, 2680: 3700, 722: 51836, 18754: 2640, 14554: 9603}, 'bedrooms': {17384: 2, 2680: 2, 722: 4, 18754: 2, 14554: 4}, 'sqft_living': {17384: 1430, 2680: 1440, 722: 4670, 18754: 1130, 14554: 3180}, 'floors': {17384: 3.0, 2680: 1.0, 722: 2.0, 18754: 1.0, 14554: 2.0}})
print (df)
       bathrooms  bedrooms  floors  sqft_living  sqft_lot  zipcode
722         3.25         4     2.0         4670     51836    98005
2680        0.75         2     1.0         1440      3700    98107
14554       2.50         4     2.0         3180      9603    98155
17384       1.50         2     3.0         1430      1650    98125
18754       1.00         2     1.0         1130      2640    98109

Answer

jezrael picture jezrael · Aug 23, 2016

You need astype:

df['zipcode'] = df.zipcode.astype(str)
#df.zipcode = df.zipcode.astype(str)

For converting to categorical:

df['zipcode'] = df.zipcode.astype('category')
#df.zipcode = df.zipcode.astype('category')

Another solution is Categorical:

df['zipcode'] = pd.Categorical(df.zipcode)

Sample with data:

import pandas as pd

df = pd.DataFrame({'zipcode': {17384: 98125, 2680: 98107, 722: 98005, 18754: 98109, 14554: 98155}, 'bathrooms': {17384: 1.5, 2680: 0.75, 722: 3.25, 18754: 1.0, 14554: 2.5}, 'sqft_lot': {17384: 1650, 2680: 3700, 722: 51836, 18754: 2640, 14554: 9603}, 'bedrooms': {17384: 2, 2680: 2, 722: 4, 18754: 2, 14554: 4}, 'sqft_living': {17384: 1430, 2680: 1440, 722: 4670, 18754: 1130, 14554: 3180}, 'floors': {17384: 3.0, 2680: 1.0, 722: 2.0, 18754: 1.0, 14554: 2.0}})
print (df)
       bathrooms  bedrooms  floors  sqft_living  sqft_lot  zipcode
722         3.25         4     2.0         4670     51836    98005
2680        0.75         2     1.0         1440      3700    98107
14554       2.50         4     2.0         3180      9603    98155
17384       1.50         2     3.0         1430      1650    98125
18754       1.00         2     1.0         1130      2640    98109

print (df.dtypes)
bathrooms      float64
bedrooms         int64
floors         float64
sqft_living      int64
sqft_lot         int64
zipcode          int64
dtype: object

df['zipcode'] = df.zipcode.astype('category')

print (df)
       bathrooms  bedrooms  floors  sqft_living  sqft_lot zipcode
722         3.25         4     2.0         4670     51836   98005
2680        0.75         2     1.0         1440      3700   98107
14554       2.50         4     2.0         3180      9603   98155
17384       1.50         2     3.0         1430      1650   98125
18754       1.00         2     1.0         1130      2640   98109

print (df.dtypes)
bathrooms       float64
bedrooms          int64
floors          float64
sqft_living       int64
sqft_lot          int64
zipcode        category
dtype: object