I have a shader where I want to move half of the vertices in the vertex shader. I'm trying to decide the best way to do this from a performance standpoint, because we're dealing with well over 100,000 verts, so speed is critical. I've looked at 3 different methods: (pseudo-code, but enough to give you the idea. The <complex formula>
I can't give out, but I can say that it involves a sin()
function, as well as a function call (just returns a number, but still a function call), as well as a bunch of basic arithmetic on floating point numbers).
if (y < 0.5)
{
x += <complex formula>;
}
This has the advantage that the <complex formula>
is only executed half the time, but the downside is that it definitely causes a branch, which may actually be slower than the formula. It is the most readable, but we care more about speed than readability in this context.
x += step(y, 0.5) * <complex formula>;
Using HLSL's step() function (which returns 0 if the first param is greater and 1 if less), you can eliminate the branch, but now the <complex formula>
is being called every time, and its results are being multiplied by 0 (thus wasted effort) half of the time.
x += (y < 0.5) ? <complex formula> : 0;
This I don't know about. Does the ?:
cause a branch? And if not, are both sides of the equation evaluated or only the one that is relevant?
The final possibility is that the <complex formula>
could be offloaded back to the CPU instead of the GPU, but I worry that it will be slower in calculating sin() and other operations, which might result in a net loss. Also, it means one more number has to be passed to the shader, and that could cause overhead as well. Anyone have any insight as to which would be the best course of action?
Addendum:
According to http://msdn.microsoft.com/en-us/library/windows/desktop/bb509665%28v=vs.85%29.aspx
the step()
function uses a ?:
internally, so it's probably no better than my 3rd solution, and potentially worse since <complex formula>
is definitely called every time, whereas it may be only called half the time with a straight ?:
. (Nobody's answered that part of the question yet.) Though avoiding both and using:
x += (1.0 - y) * <complex formula>;
may well be better than any of them, since there's no comparison being made anywhere. (And y
is always either 0 or 1.) Still executes the <complex formula>
needlessly half the time, but might be worth it to avoid branches altogether.
Perhaps look at this answer.
My guess (this is a performance question: measure it!) is that you are best off keeping the if
statement.
Reason number one: The shader compiler, in theory (and if invoked correctly), should be clever enough to make the best choice between a branch instruction, and something similar to the step
function, when it compiles your if
statement. The only way to improve on it is to profile[1]. Note that it's probably hardware-dependent at this level of granularity.
[1] Or if you have specific knowledge about how your data is laid out, read on...
Reason number two is the way shader units work: If even one fragment or vertex in the unit takes a different branch to the others, then the shader unit must take both branches. But if they all take the same branch - the other branch is ignored. So while it is per-unit, rather than per-vertex - it is still possible for the expensive branch to be skipped.
For fragments, the shader units have on-screen locality - meaning you get best performance with groups of nearby pixels all taking the same branch (see the illustration in my linked answer). To be honest, I don't know how vertices are grouped into units - but if your data is grouped appropriately - you should get the desired performance benefit.
Finally: It's worth pointing out that your <complex formula>
- if you're saying that you can hoist it out of your HLSL manually - it may well get hoisted into a CPU-based pre-shader anyway (on PC at least, from memory Xbox 360 doesn't support this, no idea about PS3). You can check this by decompiling the shader. If it is something that you only need to calculate once per-draw (rather than per-vertex/fragment) it probably is best for performance to do it on the CPU.