When computing the inverse for some square matrix A in MATLAB, using
Ai = inv(A)
% should be the same as:
Ai = A^-1
MATLAB usually notifies me that this is not the most efficient way of inverting. So what's more efficient? If I have an equation system, using the /,\ operators probably is. But sometimes I need the inverse for other computations.
What's the most efficient way to invert?
I would recommend to use svd
(unless you are really absolute sure that your matrix is not ill-conditioned). Then, based on singular values you make your decisions on further actions to take. This may sound like a 'overkill' approach, but in long run it will pay back.
Now if your matrix A
is actually invertible, then the pseudo inverse
of A
coincidence with inv(A)
, however if you are close to 'singularity' you'll easily make appropriate decision how to proceed to actually make the pseudo inverse
. Naturally these decisions will depend on your application.
Added a straightforward example:
> A= randn(3, 2); A= [A A(:, 1)+ A(:, 2)]
A =
-1.520342 -0.239380 -1.759722
0.022604 0.381374 0.403978
0.852420 1.521925 2.374346
> inv(A)
warning: inverse: matrix singular to machine precision, rcond = 0
ans =
Inf Inf Inf
Inf Inf Inf
Inf Inf Inf
> [U, S, V]= svd(A)
U =
-0.59828 -0.79038 0.13178
0.13271 -0.25993 -0.95646
0.79022 -0.55474 0.26040
S =
Diagonal Matrix
3.6555e+000 0 0
0 1.0452e+000 0
0 0 1.4645e-016
V =
0.433921 0.691650 0.577350
0.382026 -0.721611 0.577350
0.815947 -0.029962 -0.577350
> s= diag(S); k= sum(s> 1e-9) % simple thresholding based decision
k = 2
> Ainv= (U(:, 1: k)* diag(1./ s(1: k))* V(:, 1: k)')'
Ainv =
-0.594055 -0.156258 -0.273302
0.483170 0.193333 0.465592
-0.110885 0.037074 0.192290
> A* Ainv
ans =
0.982633 0.126045 -0.034317
0.126045 0.085177 0.249068
-0.034317 0.249068 0.932189
> A* pinv(A)
ans =
0.982633 0.126045 -0.034317
0.126045 0.085177 0.249068
-0.034317 0.249068 0.932189