How to make an executable ELF file in Linux using a hex editor?

Jamie picture Jamie · Oct 10, 2014 · Viewed 9.5k times · Source

Just curious. This obviously isn't a very good solution for actual programming, but say I wanted to make an executable in Bless (a hex editor).

My architecture is x86. What's a very simple program I can make? A hello world? An infinite loop? Similar to this question, but in Linux.

Answer

Decompile a NASM hello world and understand every byte in it

Version of this answer with a nice TOC and more content: http://www.cirosantilli.com/elf-hello-world (hitting the 30k char limit here)

Standards

ELF is specified by the LSB:

The LSB basically links to other standards with minor extensions, in particular:

A handy summary can be found at:

man elf

Its structure can be examined in a human readable way via utilities like readelf and objdump.

Generate the example

Let's break down a minimal runnable Linux x86-64 example:

section .data
    hello_world db "Hello world!", 10
    hello_world_len  equ $ - hello_world
section .text
    global _start
    _start:
        mov rax, 1
        mov rdi, 1
        mov rsi, hello_world
        mov rdx, hello_world_len
        syscall
        mov rax, 60
        mov rdi, 0
        syscall

Compiled with:

nasm -w+all -f elf64 -o 'hello_world.o' 'hello_world.asm'
ld -o 'hello_world.out' 'hello_world.o'

Versions:

  • NASM 2.10.09
  • Binutils version 2.24 (contains ld)
  • Ubuntu 14.04

We don't use a C program as that would complicate the analysis, that will be level 2 :-)

Hexdumps

hd hello_world.o
hd hello_world.out

Output at: https://gist.github.com/cirosantilli/7b03f6df2d404c0862c6

Global file structure

An ELF file contains the following parts:

  • ELF header. Points to the position of the section header table and the program header table.

  • Section header table (optional on executable). Each has e_shnum section headers, each pointing to the position of a section.

  • N sections, with N <= e_shnum (optional on executable)

  • Program header table (only on executable). Each has e_phnum program headers, each pointing to the position of a segment.

  • N segments, with N <= e_phnum (optional on executable)

The order of those parts is not fixed: the only fixed thing is the ELF header that must be the first thing on the file: Generic docs say:

ELF header

The easiest way to observe the header is:

readelf -h hello_world.o
readelf -h hello_world.out

Output at: https://gist.github.com/cirosantilli/7b03f6df2d404c0862c6

Bytes in the object file:

00000000  7f 45 4c 46 02 01 01 00  00 00 00 00 00 00 00 00  |.ELF............|
00000010  01 00 3e 00 01 00 00 00  00 00 00 00 00 00 00 00  |..>.............|
00000020  00 00 00 00 00 00 00 00  40 00 00 00 00 00 00 00  |........@.......|
00000030  00 00 00 00 40 00 00 00  00 00 40 00 07 00 03 00  |....@.....@.....|

Executable:

00000000  7f 45 4c 46 02 01 01 00  00 00 00 00 00 00 00 00  |.ELF............|
00000010  02 00 3e 00 01 00 00 00  b0 00 40 00 00 00 00 00  |..>.......@.....|
00000020  40 00 00 00 00 00 00 00  10 01 00 00 00 00 00 00  |@...............|
00000030  00 00 00 00 40 00 38 00  02 00 40 00 06 00 03 00  |[email protected]...@.....|

Structure represented:

typedef struct {
    unsigned char   e_ident[EI_NIDENT];
    Elf64_Half      e_type;
    Elf64_Half      e_machine;
    Elf64_Word      e_version;
    Elf64_Addr      e_entry;
    Elf64_Off       e_phoff;
    Elf64_Off       e_shoff;
    Elf64_Word      e_flags;
    Elf64_Half      e_ehsize;
    Elf64_Half      e_phentsize;
    Elf64_Half      e_phnum;
    Elf64_Half      e_shentsize;
    Elf64_Half      e_shnum;
    Elf64_Half      e_shstrndx;
} Elf64_Ehdr;

Manual breakdown:

  • 0 0: EI_MAG = 7f 45 4c 46 = 0x7f 'E', 'L', 'F': ELF magic number

  • 0 4: EI_CLASS = 02 = ELFCLASS64: 64 bit elf

  • 0 5: EI_DATA = 01 = ELFDATA2LSB: big endian data

  • 0 6: EI_VERSION = 01: format version

  • 0 7: EI_OSABI (only in 2003 Update) = 00 = ELFOSABI_NONE: no extensions.

  • 0 8: EI_PAD = 8x 00: reserved bytes. Must be set to 0.

  • 1 0: e_type = 01 00 = 1 (big endian) = ET_REl: relocatable format

    On the executable it is 02 00 for ET_EXEC.

  • 1 2: e_machine = 3e 00 = 62 = EM_X86_64: AMD64 architecture

  • 1 4: e_version = 01 00 00 00: must be 1

  • 1 8: e_entry = 8x 00: execution address entry point, or 0 if not applicable like for the object file since there is no entry point.

    On the executable, it is b0 00 40 00 00 00 00 00. TODO: what else can we set this to? The kernel seems to put the IP directly on that value, it is not hardcoded.

  • 2 0: e_phoff = 8x 00: program header table offset, 0 if not present.

    40 00 00 00 on the executable, i.e. it starts immediately after the ELF header.

  • 2 8: e_shoff = 40 7x 00 = 0x40: section header table file offset, 0 if not present.

  • 3 0: e_flags = 00 00 00 00 TODO. Arch specific.

  • 3 4: e_ehsize = 40 00: size of this elf header. TODO why this field? How can it vary?

  • 3 6: e_phentsize = 00 00: size of each program header, 0 if not present.

    38 00 on executable: it is 56 bytes long

  • 3 8: e_phnum = 00 00: number of program header entries, 0 if not present.

    02 00 on executable: there are 2 entries.

  • 3 A: e_shentsize and e_shnum = 40 00 07 00: section header size and number of entries

  • 3 E: e_shstrndx (Section Header STRing iNDeX) = 03 00: index of the .shstrtab section.

Section header table

Array of Elf64_Shdr structs.

Each entry contains metadata about a given section.

e_shoff of the ELF header gives the starting position, 0x40 here.

e_shentsize and e_shnum from the ELF header say that we have 7 entries, each 0x40 bytes long.

So the table takes bytes from 0x40 to 0x40 + 7 + 0x40 - 1 = 0x1FF.

Some section names are reserved for certain section types: http://www.sco.com/developers/gabi/2003-12-17/ch4.sheader.html#special_sections e.g. .text requires a SHT_PROGBITS type and SHF_ALLOC + SHF_EXECINSTR

readelf -S hello_world.o:

There are 7 section headers, starting at offset 0x40:

Section Headers:
  [Nr] Name              Type             Address           Offset
       Size              EntSize          Flags  Link  Info  Align
  [ 0]                   NULL             0000000000000000  00000000
       0000000000000000  0000000000000000           0     0     0
  [ 1] .data             PROGBITS         0000000000000000  00000200
       000000000000000d  0000000000000000  WA       0     0     4
  [ 2] .text             PROGBITS         0000000000000000  00000210
       0000000000000027  0000000000000000  AX       0     0     16
  [ 3] .shstrtab         STRTAB           0000000000000000  00000240
       0000000000000032  0000000000000000           0     0     1
  [ 4] .symtab           SYMTAB           0000000000000000  00000280
       00000000000000a8  0000000000000018           5     6     4
  [ 5] .strtab           STRTAB           0000000000000000  00000330
       0000000000000034  0000000000000000           0     0     1
  [ 6] .rela.text        RELA             0000000000000000  00000370
       0000000000000018  0000000000000018           4     2     4
Key to Flags:
  W (write), A (alloc), X (execute), M (merge), S (strings), l (large)
  I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
  O (extra OS processing required) o (OS specific), p (processor specific)

struct represented by each entry:

typedef struct {
    Elf64_Word  sh_name;
    Elf64_Word  sh_type;
    Elf64_Xword sh_flags;
    Elf64_Addr  sh_addr;
    Elf64_Off   sh_offset;
    Elf64_Xword sh_size;
    Elf64_Word  sh_link;
    Elf64_Word  sh_info;
    Elf64_Xword sh_addralign;
    Elf64_Xword sh_entsize;
} Elf64_Shdr;

Sections

Index 0 section

Contained in bytes 0x40 to 0x7F.

The first section is always magic: http://www.sco.com/developers/gabi/2003-12-17/ch4.sheader.html says:

If the number of sections is greater than or equal to SHN_LORESERVE (0xff00), e_shnum has the value SHN_UNDEF (0) and the actual number of section header table entries is contained in the sh_size field of the section header at index 0 (otherwise, the sh_size member of the initial entry contains 0).

There are also other magic sections detailed in Figure 4-7: Special Section Indexes.

SHT_NULL

In index 0, SHT_NULL is mandatory. Are there any other uses for it: What is the use of the SHT_NULL section in ELF? ?

.data section

.data is section 1:

00000080  01 00 00 00 01 00 00 00  03 00 00 00 00 00 00 00  |................|
00000090  00 00 00 00 00 00 00 00  00 02 00 00 00 00 00 00  |................|
000000a0  0d 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
000000b0  04 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
  • 80 0: sh_name = 01 00 00 00: index 1 in the .shstrtab string table

    Here, 1 says the name of this section starts at the first character of that section, and ends at the first NUL character, making up the string .data.

    .data is one of the section names which has a predefined meaning http://www.sco.com/developers/gabi/2003-12-17/ch4.strtab.html

    These sections hold initialized data that contribute to the program's memory image.

  • 80 4: sh_type = 01 00 00 00: SHT_PROGBITS: the section content is not specified by ELF, only by how the program interprets it. Normal since a .data section.

  • 80 8: sh_flags = 03 7x 00: SHF_ALLOC and SHF_EXECINSTR: http://www.sco.com/developers/gabi/2003-12-17/ch4.sheader.html#sh_flags, as required from a .data section

  • 90 0: sh_addr = 8x 00: in what virtual address the section will be placed during execution, 0 if not placed

  • 90 8: sh_offset = 00 02 00 00 00 00 00 00 = 0x200: number of bytes from the start of the program to the first byte in this section

  • a0 0: sh_size = 0d 00 00 00 00 00 00 00

    If we take 0xD bytes starting at sh_offset 200, we see:

    00000200  48 65 6c 6c 6f 20 77 6f  72 6c 64 21 0a 00        |Hello world!..  |
    

    AHA! So our "Hello world!" string is in the data section like we told it to be on the NASM.

    Once we graduate from hd, we will look this up like:

    readelf -x .data hello_world.o
    

    which outputs:

    Hex dump of section '.data':
      0x00000000 48656c6c 6f20776f 726c6421 0a       Hello world!.
    

    NASM sets decent properties for that section because it treats .data magically: http://www.nasm.us/doc/nasmdoc7.html#section-7.9.2

    Also note that this was a bad section choice: a good C compiler would put the string in .rodata instead, because it is read-only and it would allow for further OS optimizations.

  • a0 8: sh_link and sh_info = 8x 0: do not apply to this section type. http://www.sco.com/developers/gabi/2003-12-17/ch4.sheader.html#special_sections

  • b0 0: sh_addralign = 04 = TODO: why is this alignment necessary? Is it only for sh_addr, or also for symbols inside sh_addr?

  • b0 8: sh_entsize = 00 = the section does not contain a table. If != 0, it means that the section contains a table of fixed size entries. In this file, we see from the readelf output that this is the case for the .symtab and .rela.text sections.

.text section

Now that we've done one section manually, let's graduate and use the readelf -S of the other sections.

  [Nr] Name              Type             Address           Offset
       Size              EntSize          Flags  Link  Info  Align
  [ 2] .text             PROGBITS         0000000000000000  00000210
       0000000000000027  0000000000000000  AX       0     0     16

.text is executable but not writable: if we try to write to it Linux segfaults. Let's see if we really have some code there:

objdump -d hello_world.o

gives:

hello_world.o:     file format elf64-x86-64


Disassembly of section .text:

0000000000000000 <_start>:
   0:       b8 01 00 00 00          mov    $0x1,%eax
   5:       bf 01 00 00 00          mov    $0x1,%edi
   a:       48 be 00 00 00 00 00    movabs $0x0,%rsi
  11:       00 00 00
  14:       ba 0d 00 00 00          mov    $0xd,%edx
  19:       0f 05                   syscall
  1b:       b8 3c 00 00 00          mov    $0x3c,%eax
  20:       bf 00 00 00 00          mov    $0x0,%edi
  25:       0f 05                   syscall

If we grep b8 01 00 00 on the hd, we see that this only occurs at 00000210, which is what the section says. And the Size is 27, which matches as well. So we must be talking about the right section.

This looks like the right code: a write followed by an exit.

The most interesting part is line a which does:

movabs $0x0,%rsi

to pass the address of the string to the system call. Currently, the 0x0 is just a placeholder. After linking happens, it will be modified to contain:

4000ba: 48 be d8 00 60 00 00    movabs $0x6000d8,%rsi

This modification is possible because of the data of the .rela.text section.

SHT_STRTAB

Sections with sh_type == SHT_STRTAB are called string tables.

They hold a null separated array of strings.

Such sections are used by other sections when string names are to be used. The using section says:

  • which string table they are using
  • what is the index on the target string table where the string starts

So for example, we could have a string table containing: TODO: does it have to start with \0?

Data: \0 a b c \0 d e f \0
Index: 0 1 2 3  4 5 6 7  8

And if another section wants to use the string d e f, they have to point to index 5 of this section (letter d).

Notable string table sections:

  • .shstrtab
  • .strtab

.shstrtab

Section type: sh_type == SHT_STRTAB.

Common name: section header string table.

The section name .shstrtab is reserved. The standard says:

This section holds section names.

This section gets pointed to by the e_shstrnd field of the ELF header itself.

String indexes of this section are are pointed to by the sh_name field of section headers, which denote strings.

This section does not have SHF_ALLOC marked, so it will not appear on the executing program.

readelf -x .shstrtab hello_world.o

Gives:

Hex dump of section '.shstrtab':
  0x00000000 002e6461 7461002e 74657874 002e7368 ..data..text..sh
  0x00000010 73747274 6162002e 73796d74 6162002e strtab..symtab..
  0x00000020 73747274 6162002e 72656c61 2e746578 strtab..rela.tex
  0x00000030 7400                                t.

The data in this section has a fixed format: http://www.sco.com/developers/gabi/2003-12-17/ch4.strtab.html

If we look at the names of other sections, we see that they all contain numbers, e.g. the .text section is number 7.

Then each string ends when the first NUL character is found, e.g. character 12 is \0 just after .text\0.

.symtab

Section type: sh_type == SHT_SYMTAB.

Common name: symbol table.

First the we note that:

  • sh_link = 5
  • sh_info = 6

For SHT_SYMTAB sections, those numbers mean that:

  • strings that give symbol names are in section 5, .strtab
  • the relocation data is in section 6, .rela.text

A good high level tool to disassemble that section is:

nm hello_world.o

which gives:

0000000000000000 T _start
0000000000000000 d hello_world
000000000000000d a hello_world_len

This is however a high level view that omits some types of symbols and in which the symbol types . A more detailed disassembly can be obtained with:

readelf -s hello_world.o

which gives:

Symbol table '.symtab' contains 7 entries:
   Num:    Value          Size Type    Bind   Vis      Ndx Name
     0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND
     1: 0000000000000000     0 FILE    LOCAL  DEFAULT  ABS hello_world.asm
     2: 0000000000000000     0 SECTION LOCAL  DEFAULT    1
     3: 0000000000000000     0 SECTION LOCAL  DEFAULT    2
     4: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT    1 hello_world
     5: 000000000000000d     0 NOTYPE  LOCAL  DEFAULT  ABS hello_world_len
     6: 0000000000000000     0 NOTYPE  GLOBAL DEFAULT    2 _start

The binary format of the table is documented at http://www.sco.com/developers/gabi/2003-12-17/ch4.symtab.html

The data is:

readelf -x .symtab hello_world.o

Which gives:

Hex dump of section '.symtab':
  0x00000000 00000000 00000000 00000000 00000000 ................
  0x00000010 00000000 00000000 01000000 0400f1ff ................
  0x00000020 00000000 00000000 00000000 00000000 ................
  0x00000030 00000000 03000100 00000000 00000000 ................
  0x00000040 00000000 00000000 00000000 03000200 ................
  0x00000050 00000000 00000000 00000000 00000000 ................
  0x00000060 11000000 00000100 00000000 00000000 ................
  0x00000070 00000000 00000000 1d000000 0000f1ff ................
  0x00000080 0d000000 00000000 00000000 00000000 ................
  0x00000090 2d000000 10000200 00000000 00000000 -...............
  0x000000a0 00000000 00000000                   ........

The entries are of type:

typedef struct {
    Elf64_Word  st_name;
    unsigned char   st_info;
    unsigned char   st_other;
    Elf64_Half  st_shndx;
    Elf64_Addr  st_value;
    Elf64_Xword st_size;
} Elf64_Sym;

Like in the section table, the first entry is magical and set to a fixed meaningless values.

STT_FILE

Entry 1 has ELF64_R_TYPE == STT_FILE. ELF64_R_TYPE is continued inside of st_info.

Byte analysis:

  • 10 8: st_name = 01000000 = character 1 in the .strtab, which until the following \0 makes hello_world.asm

    This piece of information file may be used by the linker to decide on which segment sections go.

  • 10 12: st_info = 04

    Bits 0-3 = ELF64_R_TYPE = Type = 4 = STT_FILE: the main purpose of this entry is to use st_name to indicate the name of the file which generated this object file.

    Bits 4-7 = ELF64_ST_BIND = Binding = 0 = STB_LOCAL. Required value for STT_FILE.

  • 10 13: st_shndx = Symbol Table Section header Index = f1ff = SHN_ABS. Required for STT_FILE.

  • 20 0: st_value = 8x 00: required for value for STT_FILE

  • 20 8: st_size = 8x 00: no allocated size

Now from the readelf, we interpret the others quickly.

STT_SECTION

There are two such entries, one pointing to .data and the other to .text (section indexes 1 and 2).

Num:    Value          Size Type    Bind   Vis      Ndx Name
  2: 0000000000000000     0 SECTION LOCAL  DEFAULT    1
  3: 0000000000000000     0 SECTION LOCAL  DEFAULT    2

TODO what is their purpose?

STT_NOTYPE

Then come the most important symbols:

Num:    Value          Size Type    Bind   Vis      Ndx Name
  4: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT    1 hello_world
  5: 000000000000000d     0 NOTYPE  LOCAL  DEFAULT  ABS hello_world_len
  6: 0000000000000000     0 NOTYPE  GLOBAL DEFAULT    2 _start

hello_world string is in the .data section (index 1). It's value is 0: it points to the first byte of that section.

_start is marked with GLOBAL visibility since we wrote:

global _start

in NASM. This is necessary since it must be seen as the entry point. Unlike in C, by default NASM labels are local.

SHN_ABS

hello_world_len points to the special st_shndx == SHN_ABS == 0xF1FF.

0xF1FF is chosen so as to not conflict with other sections.

st_value == 0xD == 13 which is the value we have stored there on the assembly: the length of the string Hello World!.

This means that relocation will not affect this value: it is a constant.

This is small optimization that our assembler does for us and which has ELF support.

If we had used the address of hello_world_len anywhere, the assembler would not have been able to mark it as SHN_ABS, and the linker would have extra relocation work on it later.

SHT_SYMTAB on the executable

By default, NASM places a .symtab on the executable as well.

This is only used for debugging. Without the symbols, we are completely blind, and must reverse engineer everything.

You can strip it with objcopy, and the executable will still run. Such executables are called stripped executables.

.strtab

Holds strings for the symbol table.

This section has sh_type == SHT_STRTAB.

It is pointed to by sh_link == 5 of the .symtab section.

readelf -x .strtab hello_world.o

Gives:

Hex dump of section '.strtab':
  0x00000000 0068656c 6c6f5f77 6f726c64 2e61736d .hello_world.asm
  0x00000010 0068656c 6c6f5f77 6f726c64 0068656c .hello_world.hel
  0x00000020 6c6f5f77 6f726c64 5f6c656e 005f7374 lo_world_len._st
  0x00000030 61727400                            art.

This implies that it is an ELF level limitation that global variables cannot contain NUL characters.

.rela.text

Section type: sh_type == SHT_RELA.

Common name: relocation section.

.rela.text holds relocation data which says how the address should be modified when the final executable is linked. This points to bytes of the text area that must be modified when linking happens to point to the correct memory locations.

Basically, it translates the object text containing the placeholder 0x0 address:

   a:       48 be 00 00 00 00 00    movabs $0x0,%rsi
  11:       00 00 00

to the actual executable code containing the final 0x6000d8:

4000ba: 48 be d8 00 60 00 00    movabs $0x6000d8,%rsi
4000c1: 00 00 00

It was pointed to by sh_info = 6 of the .symtab section.

readelf -r hello_world.o gives:

Relocation section '.rela.text' at offset 0x3b0 contains 1 entries:
  Offset          Info           Type           Sym. Value    Sym. Name + Addend
00000000000c  000200000001 R_X86_64_64       0000000000000000 .data + 0

The section does not exist in the executable.

The actual bytes are:

00000370  0c 00 00 00 00 00 00 00  01 00 00 00 02 00 00 00  |................|
00000380  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|

The struct represented is:

typedef struct {
    Elf64_Addr  r_offset;
    Elf64_Xword r_info;
    Elf64_Sxword    r_addend;
} Elf64_Rela;

So:

  • 370 0: r_offset = 0xC: address into the .text whose address this relocation will modify

  • 370 8: r_info = 0x200000001. Contains 2 fields:

    • ELF64_R_TYPE = 0x1: meaning depends on the exact architecture.
    • ELF64_R_SYM = 0x2: index of the section to which the address points, so .data which is at index 2.

    The AMD64 ABI says that type 1 is called R_X86_64_64 and that it represents the operation S + A where:

    • S: the value of the symbol on the object file, here 0 because we point to the 00 00 00 00 00 00 00 00 of movabs $0x0,%rsi
    • A: the addend, present in field r_added

    This address is added to the section on which the relocation operates.

    This relocation operation acts on a total 8 bytes.

  • 380 0: r_addend = 0

So in our example we conclude that the new address will be: S + A = .data + 0, and thus the first thing in the data section.

Program header table

Only appears in the executable.

Contains information of how the executable should be put into the process virtual memory.

The executable is generated from object files by the linker. The main jobs that the linker does are:

  • determine which sections of the object files will go into which segments of the executable.

    In Binutils, this comes down to parsing a linker script, and dealing with a bunch of defaults.

    You can get the linker script used with ld --verbose, and set a custom one with ld -T.

  • do relocation on text sections. This depends on how the multiple sections are put into memory.

readelf -l hello_world.out gives:

Elf file type is EXEC (Executable file)
Entry point 0x4000b0
There are 2 program headers, starting at offset 64

Program Headers:
  Type           Offset             VirtAddr           PhysAddr
                 FileSiz            MemSiz              Flags  Align
  LOAD           0x0000000000000000 0x0000000000400000 0x0000000000400000
                 0x00000000000000d7 0x00000000000000d7  R E    200000
  LOAD           0x00000000000000d8 0x00000000006000d8 0x00000000006000d8
                 0x000000000000000d 0x000000000000000d  RW     200000

 Section to Segment mapping:
  Segment Sections...
   00     .text
   01     .data

On the ELF header, e_phoff, e_phnum and e_phentsize told us that there are 2 program headers, which start at 0x40 and are 0x38 bytes long each, so they are:

00000040  01 00 00 00 05 00 00 00  00 00 00 00 00 00 00 00  |................|
00000050  00 00 40 00 00 00 00 00  00 00 40 00 00 00 00 00  |..@.......@.....|
00000060  d7 00 00 00 00 00 00 00  d7 00 00 00 00 00 00 00  |................|
00000070  00 00 20 00 00 00 00 00                           |.. .....        |

and:

00000070                           01 00 00 00 06 00 00 00  |        ........|
00000080  d8 00 00 00 00 00 00 00  d8 00 60 00 00 00 00 00  |..........`.....|
00000090  d8 00 60 00 00 00 00 00  0d 00 00 00 00 00 00 00  |..`.............|
000000a0  0d 00 00 00 00 00 00 00  00 00 20 00 00 00 00 00  |.......... .....|

Structure represented http://www.sco.com/developers/gabi/2003-12-17/ch5.pheader.html:

typedef struct {
    Elf64_Word  p_type;
    Elf64_Word  p_flags;
    Elf64_Off   p_offset;
    Elf64_Addr  p_vaddr;
    Elf64_Addr  p_paddr;
    Elf64_Xword p_filesz;
    Elf64_Xword p_memsz;
    Elf64_Xword p_align;
} Elf64_Phdr;

Breakdown of the first one:

  • 40 0: p_type = 01 00 00 00 = PT_LOAD: TODO. I think it means it will be actually loaded into memory. Other types may not necessarily be.
  • 40 4: p_flags = 05 00 00 00 = execute and read permissions, no write TODO
  • 40 8: p_offset = 8x 00 TODO: what is this? Looks like offsets from the beginning of segments. But this would mean that some segments are intertwined? It is possible to play with it a bit with: gcc -Wl,-Ttext-segment=0x400030 hello_world.c
  • 50 0: p_vaddr = 00 00 40 00 00 00 00 00: initial virtual memory address to load this segment to
  • 50 8: p_paddr = 00 00 40 00 00 00 00 00: initial physical address to load in memory. Only matters for systems in which the program can set it's physical address. Otherwise, as in System V like systems, can be anything. NASM seems to just copy p_vaddrr
  • 60 0: p_filesz = d7 00 00 00 00 00 00 00: TODO vs p_memsz
  • 60 8: p_memsz = d7 00 00 00 00 00 00 00: TODO
  • 70 0: p_align = 00 00 20 00 00 00 00 00: 0 or 1 mean no alignment required TODO what does that mean? otherwise redundant with other fields

The second is analogous.

Then the:

 Section to Segment mapping:

section of the readelf tells us that:

  • 0 is the .text segment. Aha, so this is why it is executable, and not writable
  • 1 is the .data segment.