I am trying to load an ELF file compiled with "gcc -m32 test.c -o test.exe" on Linux in a 64 bit x86 environment. I am trying to load that 32bit file (test.exe) inside a user space ELF loader which has the following core logic (32bit ELF).
The problem is that calling into the returned start address results in a segmentation fault core dump. Here is the code:
void *image_load (char *elf_start, unsigned int size)
{
Elf32_Ehdr *hdr = NULL;
Elf32_Phdr *phdr = NULL;
unsigned char *start = NULL;
Elf32_Addr taddr = 0;
Elf32_Addr offset = 0;
int i = 0;
unsigned char *exec = NULL;
Elf32_Addr estart = 0;
hdr = (Elf32_Ehdr *) elf_start;
if(!is_image_valid(hdr)) {
printk("image_load:: invalid ELF image\n");
return 0;
}
exec = (unsigned char *)mmap(NULL, size, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
if(!exec) {
printk("image_load:: error allocating memory\n");
return 0;
}
// Start with clean memory.
memset(exec,0x0,size);
phdr = (Elf32_Phdr *)(elf_start + hdr->e_phoff);
for(i=0; i < hdr->e_phnum; ++i) {
if(phdr[i].p_type != PT_LOAD) {
continue;
}
if(phdr[i].p_filesz > phdr[i].p_memsz) {
printk("image_load:: p_filesz > p_memsz\n");
munmap(exec, size);
return 0;
}
if(!phdr[i].p_filesz) {
continue;
}
// p_filesz can be smaller than p_memsz,
// the difference is zeroe'd out.
start = (unsigned char *) (elf_start + phdr[i].p_offset);
// taddr = phdr[i].p_vaddr + (Elf32_Addr)exec;
if(!estart) {
estart = phdr[i].p_paddr;
}
taddr = (Elf32_Addr)exec + offset + (phdr[i].p_paddr - estart);
memmove((unsigned char *)taddr,
(unsigned char *)start,phdr[i].p_filesz);
offset += (phdr[i].p_memsz + (phdr[i].p_paddr - estart));
if(!(phdr[i].p_flags & PF_W)) {
// Read-only.
mprotect((unsigned char *) taddr,
phdr[i].p_memsz,
PROT_READ);
}
if(phdr[i].p_flags & PF_X) {
// Executable.
mprotect((unsigned char *) taddr,
phdr[i].p_memsz,
PROT_EXEC);
}
}
return (void *)((hdr->e_entry - estart) + (Elf32_Addr)exec);
}/* image_load */
...
int (*main)(int, char **)=image_load(...);
main(argc,argv); // Crash...
...
Please provide full runnable code, including the ELF that you are trying to load. I have taken the time to amend your code as best I could, and it seems to work, at least for this simple code.
Note that the loader must also be compiled as 32 bit code, you can not load a 32 bit file into a 64 bit process. Furthermore since you are not loading the code in the original place, it must be relocatable. Finally, it must be a static binary because you are not loading any libraries.
Update: Your code expects the entry point of the loaded code to conform to the int (*main)(int, char **)
prototype which is not the case in general (side note: main
actually gets a third argument, the environment, too). Read about the startup state of ELF. If you manually create the stack layout described there, you must jump to the entry point, and that will never return. In case of a C program, you could dig out the address of main
and that would match the prototype. However you are then skipping the initalization of the C library (remember, your code doesn't do library loading, so the loaded program must be statically linked) and that could be a problem.
I have extended the code with the needed bits to handle a simple C program by resolving libc references and invoking main
.
loader.c:
#include <stdio.h>
#include <string.h>
#include <libelf.h>
#include <sys/mman.h>
#include <dlfcn.h>
void printk(const char* msg)
{
fputs(msg, stderr);
}
int is_image_valid(Elf32_Ehdr *hdr)
{
return 1;
}
void *resolve(const char* sym)
{
static void *handle = NULL;
if (handle == NULL) {
handle = dlopen("libc.so", RTLD_NOW);
}
return dlsym(handle, sym);
}
void relocate(Elf32_Shdr* shdr, const Elf32_Sym* syms, const char* strings, const char* src, char* dst)
{
Elf32_Rel* rel = (Elf32_Rel*)(src + shdr->sh_offset);
int j;
for(j = 0; j < shdr->sh_size / sizeof(Elf32_Rel); j += 1) {
const char* sym = strings + syms[ELF32_R_SYM(rel[j].r_info)].st_name;
switch(ELF32_R_TYPE(rel[j].r_info)) {
case R_386_JMP_SLOT:
case R_386_GLOB_DAT:
*(Elf32_Word*)(dst + rel[j].r_offset) = (Elf32_Word)resolve(sym);
break;
}
}
}
void* find_sym(const char* name, Elf32_Shdr* shdr, const char* strings, const char* src, char* dst)
{
Elf32_Sym* syms = (Elf32_Sym*)(src + shdr->sh_offset);
int i;
for(i = 0; i < shdr->sh_size / sizeof(Elf32_Sym); i += 1) {
if (strcmp(name, strings + syms[i].st_name) == 0) {
return dst + syms[i].st_value;
}
}
return NULL;
}
void *image_load (char *elf_start, unsigned int size)
{
Elf32_Ehdr *hdr = NULL;
Elf32_Phdr *phdr = NULL;
Elf32_Shdr *shdr = NULL;
Elf32_Sym *syms = NULL;
char *strings = NULL;
char *start = NULL;
char *taddr = NULL;
void *entry = NULL;
int i = 0;
char *exec = NULL;
hdr = (Elf32_Ehdr *) elf_start;
if(!is_image_valid(hdr)) {
printk("image_load:: invalid ELF image\n");
return 0;
}
exec = mmap(NULL, size, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
if(!exec) {
printk("image_load:: error allocating memory\n");
return 0;
}
// Start with clean memory.
memset(exec,0x0,size);
phdr = (Elf32_Phdr *)(elf_start + hdr->e_phoff);
for(i=0; i < hdr->e_phnum; ++i) {
if(phdr[i].p_type != PT_LOAD) {
continue;
}
if(phdr[i].p_filesz > phdr[i].p_memsz) {
printk("image_load:: p_filesz > p_memsz\n");
munmap(exec, size);
return 0;
}
if(!phdr[i].p_filesz) {
continue;
}
// p_filesz can be smaller than p_memsz,
// the difference is zeroe'd out.
start = elf_start + phdr[i].p_offset;
taddr = phdr[i].p_vaddr + exec;
memmove(taddr,start,phdr[i].p_filesz);
if(!(phdr[i].p_flags & PF_W)) {
// Read-only.
mprotect((unsigned char *) taddr,
phdr[i].p_memsz,
PROT_READ);
}
if(phdr[i].p_flags & PF_X) {
// Executable.
mprotect((unsigned char *) taddr,
phdr[i].p_memsz,
PROT_EXEC);
}
}
shdr = (Elf32_Shdr *)(elf_start + hdr->e_shoff);
for(i=0; i < hdr->e_shnum; ++i) {
if (shdr[i].sh_type == SHT_DYNSYM) {
syms = (Elf32_Sym*)(elf_start + shdr[i].sh_offset);
strings = elf_start + shdr[shdr[i].sh_link].sh_offset;
entry = find_sym("main", shdr + i, strings, elf_start, exec);
break;
}
}
for(i=0; i < hdr->e_shnum; ++i) {
if (shdr[i].sh_type == SHT_REL) {
relocate(shdr + i, syms, strings, elf_start, exec);
}
}
return entry;
}/* image_load */
int main(int argc, char** argv, char** envp)
{
int (*ptr)(int, char **, char**);
static char buf[1048576];
FILE* elf = fopen(argv[1], "rb");
fread(buf, sizeof buf, 1, elf);
ptr=image_load(buf, sizeof buf);
return ptr(argc,argv,envp);
}
elf.c:
#include <stdio.h>
int main()
{
fprintf(stdout, "Hello world! fprintf=%p, stdout=%p\n", fprintf, stdout);
return 0;
}
test run:
$ gcc -m32 -g -Wall -ldl -o loader loader.c
$ gcc -m32 -pie -fPIE -o elf elf.c
$ ./loader elf
Hello world! fprintf=0xf7612420, stdout=0xf770e4c0